Introduction to Stochastic Integration

· Springer Science & Business Media
E-bog
279
Sider
Bedømmelser og anmeldelser verificeres ikke  Få flere oplysninger

Om denne e-bog

In the Leibniz–Newton calculus, one learns the di?erentiation and integration of deterministic functions. A basic theorem in di?erentiation is the chain rule, which gives the derivative of a composite of two di?erentiable functions. The chain rule, when written in an inde?nite integral form, yields the method of substitution. In advanced calculus, the Riemann–Stieltjes integral is de?ned through the same procedure of “partition-evaluation-summation-limit” as in the Riemann integral. In dealing with random functions such as functions of a Brownian motion, the chain rule for the Leibniz–Newton calculus breaks down. A Brownian motionmovessorapidlyandirregularlythatalmostallofitssamplepathsare nowhere di?erentiable. Thus we cannot di?erentiate functions of a Brownian motion in the same way as in the Leibniz–Newton calculus. In 1944 Kiyosi Itˆ o published the celebrated paper “Stochastic Integral” in the Proceedings of the Imperial Academy (Tokyo). It was the beginning of the Itˆ o calculus, the counterpart of the Leibniz–Newton calculus for random functions. In this six-page paper, Itˆ o introduced the stochastic integral and a formula, known since then as Itˆ o’s formula. The Itˆ o formula is the chain rule for the Itˆocalculus.Butitcannotbe expressed as in the Leibniz–Newton calculus in terms of derivatives, since a Brownian motion path is nowhere di?erentiable. The Itˆ o formula can be interpreted only in the integral form. Moreover, there is an additional term in the formula, called the Itˆ o correction term, resulting from the nonzero quadratic variation of a Brownian motion.

Bedøm denne e-bog

Fortæl os, hvad du mener.

Oplysninger om læsning

Smartphones og tablets
Installer appen Google Play Bøger til Android og iPad/iPhone. Den synkroniserer automatisk med din konto og giver dig mulighed for at læse online eller offline, uanset hvor du er.
Bærbare og stationære computere
Du kan høre lydbøger, du har købt i Google Play via browseren på din computer.
e-læsere og andre enheder
Hvis du vil læse på e-ink-enheder som f.eks. Kobo-e-læsere, skal du downloade en fil og overføre den til din enhed. Følg den detaljerede vejledning i Hjælp for at overføre filerne til understøttede e-læsere.