Introduction to Stochastic Integration

· Springer Science & Business Media
Е-книга
279
Страници
Оцените и рецензиите не се потврдени  Дознајте повеќе

За е-книгава

In the Leibniz–Newton calculus, one learns the di?erentiation and integration of deterministic functions. A basic theorem in di?erentiation is the chain rule, which gives the derivative of a composite of two di?erentiable functions. The chain rule, when written in an inde?nite integral form, yields the method of substitution. In advanced calculus, the Riemann–Stieltjes integral is de?ned through the same procedure of “partition-evaluation-summation-limit” as in the Riemann integral. In dealing with random functions such as functions of a Brownian motion, the chain rule for the Leibniz–Newton calculus breaks down. A Brownian motionmovessorapidlyandirregularlythatalmostallofitssamplepathsare nowhere di?erentiable. Thus we cannot di?erentiate functions of a Brownian motion in the same way as in the Leibniz–Newton calculus. In 1944 Kiyosi Itˆ o published the celebrated paper “Stochastic Integral” in the Proceedings of the Imperial Academy (Tokyo). It was the beginning of the Itˆ o calculus, the counterpart of the Leibniz–Newton calculus for random functions. In this six-page paper, Itˆ o introduced the stochastic integral and a formula, known since then as Itˆ o’s formula. The Itˆ o formula is the chain rule for the Itˆocalculus.Butitcannotbe expressed as in the Leibniz–Newton calculus in terms of derivatives, since a Brownian motion path is nowhere di?erentiable. The Itˆ o formula can be interpreted only in the integral form. Moreover, there is an additional term in the formula, called the Itˆ o correction term, resulting from the nonzero quadratic variation of a Brownian motion.

Оценете ја е-книгава

Кажете ни што мислите.

Информации за читање

Паметни телефони и таблети
Инсталирајте ја апликацијата Google Play Books за Android и iPad/iPhone. Автоматски се синхронизира со сметката и ви овозможува да читате онлајн или офлајн каде и да сте.
Лаптопи и компјутери
Може да слушате аудиокниги купени од Google Play со користење на веб-прелистувачот на компјутерот.
Е-читачи и други уреди
За да читате на уреди со е-мастило, како што се е-читачите Kobo, ќе треба да преземете датотека и да ја префрлите на уредот. Следете ги деталните упатства во Центарот за помош за префрлање на датотеките на поддржани е-читачи.