Introduction to Stochastic Integration

· Springer Science & Business Media
电子书
279
评分和评价未经验证  了解详情

关于此电子书

In the Leibniz–Newton calculus, one learns the di?erentiation and integration of deterministic functions. A basic theorem in di?erentiation is the chain rule, which gives the derivative of a composite of two di?erentiable functions. The chain rule, when written in an inde?nite integral form, yields the method of substitution. In advanced calculus, the Riemann–Stieltjes integral is de?ned through the same procedure of “partition-evaluation-summation-limit” as in the Riemann integral. In dealing with random functions such as functions of a Brownian motion, the chain rule for the Leibniz–Newton calculus breaks down. A Brownian motionmovessorapidlyandirregularlythatalmostallofitssamplepathsare nowhere di?erentiable. Thus we cannot di?erentiate functions of a Brownian motion in the same way as in the Leibniz–Newton calculus. In 1944 Kiyosi Itˆ o published the celebrated paper “Stochastic Integral” in the Proceedings of the Imperial Academy (Tokyo). It was the beginning of the Itˆ o calculus, the counterpart of the Leibniz–Newton calculus for random functions. In this six-page paper, Itˆ o introduced the stochastic integral and a formula, known since then as Itˆ o’s formula. The Itˆ o formula is the chain rule for the Itˆocalculus.Butitcannotbe expressed as in the Leibniz–Newton calculus in terms of derivatives, since a Brownian motion path is nowhere di?erentiable. The Itˆ o formula can be interpreted only in the integral form. Moreover, there is an additional term in the formula, called the Itˆ o correction term, resulting from the nonzero quadratic variation of a Brownian motion.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。