Introduction to Topological Manifolds

· Graduate Texts in Mathematics पुस्तक 202 · Springer Science & Business Media
इ-पुस्तक
392
पृष्ठहरू
रेटिङ र रिभ्यूहरूको पुष्टि गरिएको हुँदैन  थप जान्नुहोस्

यो इ-पुस्तकका बारेमा

This book is an introduction to manifolds at the beginning graduate level. It contains the essential topological ideas that are needed for the further study of manifolds, particularly in the context of di?erential geometry, algebraic topology, and related ?elds. Its guiding philosophy is to develop these ideas rigorously but economically, with minimal prerequisites and plenty of geometric intuition. Here at the University of Washington, for example, this text is used for the ?rst third of a year-long course on the geometry and topology of manifolds; the remaining two-thirds focuses on smooth manifolds. Therearemanysuperbtextsongeneralandalgebraictopologyavailable. Why add another one to the catalog? The answer lies in my particular visionofgraduateeducation—itismy(admittedlybiased)beliefthatevery serious student of mathematics needs to know manifolds intimately, in the same way that most students come to know the integers, the real numbers, Euclidean spaces, groups, rings, and ?elds. Manifolds play a role in nearly every major branch of mathematics (as I illustrate in Chapter 1), and specialists in many ?elds ?nd themselves using concepts and terminology fromtopologyandmanifoldtheoryonadailybasis. Manifoldsarethuspart of the basic vocabulary of mathematics, and need to be part of the basic graduate education. The ?rst steps must be topological, and are embodied in this book; in most cases, they should be complemented by material on smooth manifolds, vector ?elds, di?erential forms, and the like. (After all, few of the really interesting applications of manifold theory are possible without using tools from calculus.

यो इ-पुस्तकको मूल्याङ्कन गर्नुहोस्

हामीलाई आफ्नो धारणा बताउनुहोस्।

जानकारी पढ्दै

स्मार्टफोन तथा ट्याबलेटहरू
AndroidiPad/iPhone का लागि Google Play किताब एप को इन्स्टल गर्नुहोस्। यो तपाईंको खातासॅंग स्वतः सिंक हुन्छ र तपाईं अनलाइन वा अफलाइन जहाँ भए पनि अध्ययन गर्न दिन्छ।
ल्यापटप तथा कम्प्युटरहरू
तपाईं Google Play मा खरिद गरिएको अडियोबुक आफ्नो कम्प्युटरको वेब ब्राउजर प्रयोग गरेर सुन्न सक्नुहुन्छ।
eReaders र अन्य उपकरणहरू
Kobo eReaders जस्ता e-ink डिभाइसहरूमा फाइल पढ्न तपाईंले फाइल डाउनलोड गरेर उक्त फाइल आफ्नो डिभाइसमा ट्रान्स्फर गर्नु पर्ने हुन्छ। ती फाइलहरू पढ्न मिल्ने इबुक रिडरहरूमा ती फाइलहरू ट्रान्स्फर गर्नेसम्बन्धी विस्तृत निर्देशनहरू प्राप्त गर्न मद्दत केन्द्र मा जानुहोस्।