Introduction to the $h$-Principle

·
· American Mathematical Soc.
eBook
206
หน้า
คะแนนและรีวิวไม่ได้รับการตรวจสอบยืนยัน  ดูข้อมูลเพิ่มเติม

เกี่ยวกับ eBook เล่มนี้

One of the most powerful modern methods of solving partial differential equations is Gromov's $h$-principle. It has also been, traditionally, one of the most difficult to explain. This book is a broadly accessible exposition of the principle and its applications. The essence ofthe $h$-principle is the reduction of problems involving partial differential relations to problems of a purely homotopy-theoretic nature. Two famous examples of the $h$-principle are the Nash-Kuiper $C $-isometric embedding theory in Riemannian geometry and the Smale-Hirsch immersion theory in differential topology. Gromov transformed these examples into a powerful general method for proving the $h$-principle. Both of these examples and their explanations in terms of the $h$-principle are covered in detail in the book. The authors cover two main embodiments of the principle: holonomic approximation and convex integration.

ให้คะแนน eBook นี้

แสดงความเห็นของคุณให้เรารับรู้

ข้อมูลในการอ่าน

สมาร์ทโฟนและแท็บเล็ต
ติดตั้งแอป Google Play Books สำหรับ Android และ iPad/iPhone แอปจะซิงค์โดยอัตโนมัติกับบัญชีของคุณ และช่วยให้คุณอ่านแบบออนไลน์หรือออฟไลน์ได้ทุกที่
แล็ปท็อปและคอมพิวเตอร์
คุณฟังหนังสือเสียงที่ซื้อจาก Google Play โดยใช้เว็บเบราว์เซอร์ในคอมพิวเตอร์ได้
eReader และอุปกรณ์อื่นๆ
หากต้องการอ่านบนอุปกรณ์ e-ink เช่น Kobo eReader คุณจะต้องดาวน์โหลดและโอนไฟล์ไปยังอุปกรณ์ของคุณ โปรดทำตามวิธีการอย่างละเอียดในศูนย์ช่วยเหลือเพื่อโอนไฟล์ไปยัง eReader ที่รองรับ