Stability of Spherically Symmetric Wave Maps

· American Mathematical Soc.
Ebook
80
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

We study Wave Maps from ${\mathbf{R}}^{2+1}$ to the hyperbolic plane ${\mathbf{H}}^{2}$ with smooth compactly supported initial data which are close to smooth spherically symmetric initial data with respect to some $H^{1+\mu}$, $\mu>0$. We show that such Wave Maps don't develop singularities in finite time and stay close to the Wave Map extending the spherically symmetric data(whose existence is ensured by a theorem of Christodoulou-Tahvildar-Zadeh) with respect to all $H^{1+\delta}, \delta\less\mu_{0}$ for suitable $\mu_{0}(\mu)>0$. We obtain a similar result for Wave Maps whose initial data are close to geodesic ones. This strengthens a theorem of Sideris for this context.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.