Scientific Computing: Vol. III - Approximation and Integration

· Texts in Computational Science and Engineering Book 20 · Springer
Ebook
592
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This is the third of three volumes providing a comprehensive presentation of the fundamentals of scientific computing. This volume discusses topics that depend more on calculus than linear algebra, in order to prepare the reader for solving differential equations. This book and its companions show how to determine the quality of computational results, and how to measure the relative efficiency of competing methods. Readers learn how to determine the maximum attainable accuracy of algorithms, and how to select the best method for computing problems. This book also discusses programming in several languages, including C++, Fortran and MATLAB. There are 90 examples, 200 exercises, 36 algorithms, 40 interactive JavaScript programs, 91 references to software programs and 1 case study.

Topics are introduced with goals, literature references and links to public software. There are descriptions of the current algorithms in GSLIB and MATLAB.

This book could be used for a second course in numerical methods, for either upper level undergraduates or first year graduate students. Parts of the text could be used for specialized courses, such as nonlinear optimization or iterative linear algebra.

About the author

John Trangenstein is Professor of Mathematics Emeritus at Duke University in Durham North Carolina. He was a professor at Duke from 1991 to 2011. Previously he was a Mathematician in the Applied Mathematics Group at Lawrence Livermore National Laboratory from 1986 to 1991, a Research Specialist at Exxon Production Laboratory in Houston from 1981 to 1986, a Mathematician at S Cubed in San Diego from 1979 to 1981, and an Assistant Professor of Mathematics at the University of California at San Diego from 1975 to 1979. He received his PhD in Applied Mathematics from Cornell University in 1975, and his SB degree from the University of Chicago in 1972. He has authored two other book, with Cambridge University Press, namely Numerical Solution of Hyperbolic Partial Differential Equations (2009) and Numerical Solution of Elliptic and Parabolic Partial Differential Equations (2013).


Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.