Infinite-Dimensional Representations of 2-Groups

· American Mathematical Soc.
Ebook
120
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

A `2-group' is a category equipped with a multiplication satisfying laws like those of a group. Just as groups have representations on vector spaces, 2-groups have representations on `2-vector spaces', which are categories analogous to vector spaces. Unfortunately, Lie 2-groups typically have few representations on the finite-dimensional 2-vector spaces introduced by Kapranov and Voevodsky. For this reason, Crane, Sheppeard and Yetter introduced certain infinite-dimensional 2-vector spaces called `measurable categories' (since they are closely related to measurable fields of Hilbert spaces), and used these to study infinite-dimensional representations of certain Lie 2-groups. Here we continue this work. We begin with a detailed study of measurable categories. Then we give a geometrical description of the measurable representations, intertwiners and 2-intertwiners for any skeletal measurable 2-group. We study tensor products and direct sums for representations, and various concepts of subrepresentation. We describe direct sums of intertwiners, and sub-intertwiners--features not seen in ordinary group representation theory. We study irreducible and indecomposable representations and intertwiners. We also study `irretractable' representations--another feature not seen in ordinary group representation theory. Finally, we argue that measurable categories equipped with some extra structure deserve to be considered `separable 2-Hilbert spaces', and compare this idea to a tentative definition of 2-Hilbert spaces as representation categories of commutative von Neumann algebras.

About the author

John C. Baez is at University of California, USA. ||Aristide Baratin is at Max Planck Institute for Gravitational Physics,Germany. |Laurent Freidel is at Perimeter Institute for Theoretical Physics, Canada. |Derek K. Wise is at University of Erlangen-Nurnberg, Germany

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.