Full-Potential Electronic Structure Method: Energy and Force Calculations with Density Functional and Dynamical Mean Field Theory

· · · · ·
· Springer Series in Solid-State Sciences Book 167 · Springer Science & Business Media
Ebook
200
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This is a book describing electronic structure theory and application within the framework of a methodology implemented in the computer code RSPt. In 1986, when the code that was to become RSPt was developed enough to be useful, it was one of the ?rst full-potential, all-electron, relativistic implem- tations of DFT (density functional theory). While RSPt was documented p- asitically in many publications describing the results of its application, it was many years before a publication explicitly describing aspects of the method appeared. In the meantime, several excellent all-electron, full-potential me- ods had been developed, published, and become available. So why a book about RSPt now? The code that became RSPt was initially developed as a personal research tool, rather than a collaborative e?ort or as a product. As such it required some knowledge of its inner workings to use, and as it was meant to be m- imally ?exible, the code required experience to be used e?ectively. These - tributes inhibited, but did not prevent, the spread of RSPt as a research tool. While applicable across the periodic table, the method is particularly useful in describing a wide range of materials, including heavier elements and c- pounds, and its ?exibility provides targeted accuracy and a convenient and accurate framework for implementing and assessing the e?ect of new models.

About the author

John Wills is a Technical Staff Member in the Theoretical Division at Los Alamos National Laboratory, current serving as Group Leader of the Physics and Chemistry of Materials Group. He has worked on electronic structure theory and application for the past 27 years, and is an author on 170 publications in this area, 61 of which are on the electronic structure of f-electron elements and compounds. Olle Eriksson has been active in the theory of electronic structure of materials for 25 years, and has published some 400 articles in this field. He is currently chair professor at the Department of Physics and Materials Science, Uppsala University. Per Andersson is currently Senior Scientist at the Swedish Defence Research Agency and has been active in the field for 15 years. Anna Delin has been active in the theory of electronic structure of materials for 15 years, and has published some 100 articles in this field. She is currently associate professor at the Department of Physics and Materials Science, Uppsala University. Oleksiy Grechnyev is has been active in the theory of electronic structure of materials and magnetism for 10 years, and has published 16 articles in this field (using name spelling A. Grechnev). He has graduated from Kharkiv National University (Ukraine) and obtained a PhD degree in Uppsala University (Sweden). He is currently researcher at Department of Theoretical Physics, B. Verkin Institute for Low Temperature Physics and Engineering (Kharkov, Ukraine). Mebarek Alouani has been working on theory of electronic structure and spectroscopy for 26 years, and has published more than 100 articles and books in this field. He is currently full professor at the Institute of Physics and Chemistry of Materials of Strasbourg (IPCMS) of the University of Strasbourg, France.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.