Power Algebras over Semirings: With Applications in Mathematics and Computer Science

· Mathematics and Its Applications Book 488 · Springer Science & Business Media
Ebook
206
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This monograph is a continuation of several themes presented in my previous books [146, 149]. In those volumes, I was concerned primarily with the properties of semirings. Here, the objects of investigation are sets of the form RA, where R is a semiring and A is a set having a certain structure. The problem is one of translating that structure to RA in some "natural" way. As such, it tries to find a unified way of dealing with diverse topics in mathematics and theoretical com puter science as formal language theory, the theory of fuzzy algebraic structures, models of optimal control, and many others. Another special case is the creation of "idempotent analysis" and similar work in optimization theory. Unlike the case of the previous work, which rested on a fairly established mathematical foundation, the approach here is much more tentative and docimastic. This is an introduction to, not a definitative presentation of, an area of mathematics still very much in the making. The basic philosphical problem lurking in the background is one stated suc cinctly by Hahle and Sostak [185]: ". . . to what extent basic fields of mathematics like algebra and topology are dependent on the underlying set theory?" The conflicting definitions proposed by various researchers in search of a resolution to this conundrum show just how difficult this problem is to see in a proper light.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.