The approach adopted in the monograph is based on the following paradigms:
• Examine the existence of spiky steady states in reaction-diffusion systems and select as observable patterns only the stable ones
• Begin by exploring spatially homogeneous two-component activator-inhibitor systems in one or two space dimensions
• Extend the studies by considering extra effects or related systems, each motivated by their specific roles in developmental biology, such as spatial inhomogeneities, large reaction rates, altered boundary conditions, saturation terms, convection, many-component systems.
Mathematical Aspects of Pattern Formation in Biological Systems will be of interest to graduate students and researchers who are active in reaction-diffusion systems, pattern formation and mathematical biology.