Wendell T. Hill, III has held the rank of Professor since 1996 at the University of Maryland, College Park, with appointments in the Institute for Physical Science and Technology and the Department of Physics; he has been a fellow of the Joint Quantum Institute at the University of Maryland since 2006. From high-energy particle physics to atomic, molecular and optical (AMO) physics to condensed matter physics, Hill’s publications span a broad range of physics subdisciplines. His current investigations fall into three AMO areas: ultrafast quantum dynamics; ultraintense laser-matter interactions; ultracold quantum atoms. His group was one of the first to employ velocity-map imaging, coupled with optimal-control techniques, to control femtosecond molecular dynamics. His most recent work finds him developing approaches to exploit phase-locked pairs of pulses, both to control dynamics and to decipher optimal control pulses. In addition to numerous journal manuscripts, he wrote the introductory chapter on electromagnetic radiation for the “Encyclopedia of Applied Spectroscopy,” published in 2009 by Wiley, co-author the physics text “Light-Matter Interaction: Atoms and Molecules in External Fields and Nonlinear Optics,” published in 2007 by Wiley and co-edited “Progress in Ultrafast Intense Laser Science VIII,” published in 2012 by Springer Science.
Gerhard G. Paulus has been a Professor of Nonlinear Optics at Friedrich Schiller University since September 2007, after leaving Texas A&M University, where he was Associate Professor of Physics since 2003. Currently, he is the dean of the Faculty of Physics and Astronomy of his university. His research fields are strong-field and attosecond laser physics, high-precision X-ray polarimetry, and XUV nanoscale imaging. Key contributions are the discovery of the plateau in above-threshold ionization spectra and the measurement of the CE phase, the demonstration of X-ray polarimeters with an extinction ratio of 10 billion, and, most recently, the realization of optical coherence tomography in the extreme ultraviolet with nanometer resolution.