Probabilistic Machine Learning: Advanced Topics

· MIT Press
Ebook
1360
Pages
Eligible
Ratings and reviews aren’t verified  Learn More

About this ebook

An advanced book for researchers and graduate students working in machine learning and statistics who want to learn about deep learning, Bayesian inference, generative models, and decision making under uncertainty.

An advanced counterpart to Probabilistic Machine Learning: An Introduction, this high-level textbook provides researchers and graduate students detailed coverage of cutting-edge topics in machine learning, including deep generative modeling, graphical models, Bayesian inference, reinforcement learning, and causality. This volume puts deep learning into a larger statistical context and unifies approaches based on deep learning with ones based on probabilistic modeling and inference. With contributions from top scientists and domain experts from places such as Google, DeepMind, Amazon, Purdue University, NYU, and the University of Washington, this rigorous book is essential to understanding the vital issues in machine learning.

  • Covers generation of high dimensional outputs, such as images, text, and graphs
  • Discusses methods for discovering insights about data, based on latent variable models
  • Considers training and testing under different distributions
  • Explores how to use probabilistic models and inference for causal inference and decision making
  • Features online Python code accompaniment

About the author

Kevin P. Murphy is a Research Scientist at Google in Mountain View, California, where he works on artificial intelligence, machine learning, and Bayesian modeling.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.