Kleinian Groups

· Grundlehren der mathematischen Wissenschaften 287 ବହି · Springer Science & Business Media
ଇବୁକ୍
328
ପୃଷ୍ଠାଗୁଡ଼ିକ
ରେଟିଂ ଓ ସମୀକ୍ଷାଗୁଡ଼ିକୁ ଯାଞ୍ଚ କରାଯାଇନାହିଁ  ଅଧିକ ଜାଣନ୍ତୁ

ଏହି ଇବୁକ୍ ବିଷୟରେ

The modern theory of Kleinian groups starts with the work of Lars Ahlfors and Lipman Bers; specifically with Ahlfors' finiteness theorem, and Bers' observation that their joint work on the Beltrami equation has deep implications for the theory of Kleinian groups and their deformations. From the point of view of uniformizations of Riemann surfaces, Bers' observation has the consequence that the question of understanding the different uniformizations of a finite Riemann surface poses a purely topological problem; it is independent of the conformal structure on the surface. The last two chapters here give a topological description of the set of all (geometrically finite) uniformizations of finite Riemann surfaces. We carefully skirt Ahlfors' finiteness theorem. For groups which uniformize a finite Riemann surface; that is, groups with an invariant component, one can either start with the assumption that the group is finitely generated, and then use the finiteness theorem to conclude that the group represents only finitely many finite Riemann surfaces, or, as we do here, one can start with the assumption that, in the invariant component, the group represents a finite Riemann surface, and then, using essentially topological techniques, reach the same conclusion. More recently, Bill Thurston wrought a revolution in the field by showing that one could analyze Kleinian groups using 3-dimensional hyperbolic geome try, and there is now an active school of research using these methods.

ଏହି ଇବୁକ୍‍କୁ ମୂଲ୍ୟାଙ୍କନ କରନ୍ତୁ

ଆପଣ କଣ ଭାବୁଛନ୍ତି ତାହା ଆମକୁ ଜଣାନ୍ତୁ।

ପଢ଼ିବା ପାଇଁ ତଥ୍ୟ

ସ୍ମାର୍ଟଫୋନ ଓ ଟାବଲେଟ
Google Play Books ଆପ୍କୁ, AndroidiPad/iPhone ପାଇଁ ଇନଷ୍ଟଲ୍ କରନ୍ତୁ। ଏହା ସ୍ଵଚାଳିତ ଭାବେ ଆପଣଙ୍କ ଆକାଉଣ୍ଟରେ ସିଙ୍କ ହୋ‍ଇଯିବ ଏବଂ ଆପଣ ଯେଉଁଠି ଥାଆନ୍ତୁ ନା କାହିଁକି ଆନଲାଇନ୍ କିମ୍ବା ଅଫଲାଇନ୍‍ରେ ପଢ଼ିବା ପାଇଁ ଅନୁମତି ଦେବ।
ଲାପଟପ ଓ କମ୍ପ୍ୟୁଟର
ନିଜର କମ୍ପ୍ୟୁଟର୍‍ରେ ଥିବା ୱେବ୍ ବ୍ରାଉଜର୍‍କୁ ବ୍ୟବହାର କରି Google Playରୁ କିଣିଥିବା ଅଡିଓବୁକ୍‍କୁ ଆପଣ ଶୁଣିପାରିବେ।
ଇ-ରିଡର୍ ଓ ଅନ୍ୟ ଡିଭାଇସ୍‍ଗୁଡ଼ିକ
Kobo eReaders ପରି e-ink ଡିଭାଇସଗୁଡ଼ିକରେ ପଢ଼ିବା ପାଇଁ, ଆପଣଙ୍କୁ ଏକ ଫାଇଲ ଡାଉନଲୋଡ କରି ଏହାକୁ ଆପଣଙ୍କ ଡିଭାଇସକୁ ଟ୍ରାନ୍ସଫର କରିବାକୁ ହେବ। ସମର୍ଥିତ eReadersକୁ ଫାଇଲଗୁଡ଼ିକ ଟ୍ରାନ୍ସଫର କରିବା ପାଇଁ ସହାୟତା କେନ୍ଦ୍ରରେ ଥିବା ସବିଶେଷ ନିର୍ଦ୍ଦେଶାବଳୀକୁ ଅନୁସରଣ କରନ୍ତୁ।