Introduction to Finite Elastoplasticity presents introductory explanations that can be readily understood by readers with only a basic knowledge of elastoplasticity, showing physical backgrounds of concepts in detail and derivation processes of almost all equations. The authors address various analytical and numerical finite strain analyses, including new theories developed in recent years, and explain fundamentals including the push-forward and pull-back operations and the Lie derivatives of tensors.
As a foundation to finite strain theory, the authors begin by addressing the advanced mathematical and physical properties of continuum mechanics. They progress to explain a finite elastoplastic constitutive model, discuss numerical issues on stress computation, implement the numerical algorithms for stress computation into large-deformation finite element analysis and illustrate several numerical examples of boundary-value problems. Programs for the stress computation of finite elastoplastic models explained in this book are included in an appendix, and the code can be downloaded from an accompanying website.
Koichi Hashiguchi, Daiichi University, Japan, & Yuki Tamakawa, Tohuku University, Japan
Koichi Hashiguchi is Professor, Daiichi University and Emeritus Professor of Kyushu University), Japan. He has taught applied mechanics for undergraduate and postgraduate students for 40 years and has supervised 34 Doctorates of applied mechanics.
Current research in the field of plasticity includes the development of constitutive modelling of elastoplastic materials such as metals and soils which have been widely studied as elastoplastic materials for the last forty years. He has published circa 50 refereed journal papers on elastoplasticity since 2000.
Yuki Tamakawa is Associate Professor, Dept. Civil and Environmental Eng., Tohoku University. He has taught applied mechanics for undergraduate and postgraduate students for 12 years, and his research interests include elastoplasticity, nonlinear mechanics, material and structural instability, and bifurcation.