Konvergenzverhalten des Iterativen Proportionalen Anpassungsverfahrens Im Fall Kontinuierlicher Maße und Im Fall Diskreter Maße

· Augsburger Schriften zur Mathematik, Physik und Informatik Llibre 25 · Logos Verlag Berlin GmbH
Llibre electrònic
170
Pàgines
Apte
No es verifiquen les puntuacions ni les ressenyes Més informació

Sobre aquest llibre

Diese Arbeit untersucht das iterative proportionale Anpassungsverfahren (IPF-Verfahren). Das Verfahren versucht, eine gegebene bivariate Verteilung biproportional an zwei gegebene Randverteilungen anzupassen. Dies geschieht durch abwechselnde Skalierung der vorgegebenen bivariaten Verteilung in jeweils einer Variablen, sodass nach jeder Skalierung die jeweilige Randverteilung mit der festen vorgegebenen Verteilung ubereinstimmt. In der Regel terminiert das IPF-Verfahren nicht nach endlich vielen Schritten, sodass eine Konvergenzanalyse notwendig ist. Dazu wird das Verfahren als alternierende Minimierung von f-Divergenzen beschrieben. Mit Hilfe der I-Divergenz, einer speziellen Klasse von f-Divergenzen, werden einzelne Iterationsschritte uber sogenannte Mehr-Punkte-Eigenschaften in Verbindung gebracht. Aus diesen Eigenschaften leitet sich unter gewissen Regularitatsbedingungen eine Konvergenzaussage des IPF-Verfahrens ab. Unter der Einschrankung auf diskrete Grundraume wird gezeigt, dass das IPF-Verfahren maximal zwei Haufungspunkte hat. Der Trager dieser Haufungspunkte lasst sich ohne Anwendung des IPF-Verfahrens effizient bestimmen, was zu einer Beschleunigung des IPF-Verfahrens beitragen kann. Zuletzt wird die stetige Abhangigkeit der Haufungspunkte von der gegebenen bivariaten Verteilung und den gegebenen Randverteilungen bewiesen.

Puntua aquest llibre electrònic

Dona'ns la teva opinió.

Informació de lectura

Telèfons intel·ligents i tauletes
Instal·la l'aplicació Google Play Llibres per a Android i per a iPad i iPhone. Aquesta aplicació se sincronitza automàticament amb el compte i et permet llegir llibres en línia o sense connexió a qualsevol lloc.
Ordinadors portàtils i ordinadors de taula
Pots escoltar els audiollibres que has comprat a Google Play amb el navegador web de l'ordinador.
Lectors de llibres electrònics i altres dispositius
Per llegir en dispositius de tinta electrònica, com ara lectors de llibres electrònics Kobo, hauràs de baixar un fitxer i transferir-lo al dispositiu. Segueix les instruccions detallades del Centre d'ajuda per transferir els fitxers a lectors de llibres electrònics compatibles.