Konvergenzverhalten des Iterativen Proportionalen Anpassungsverfahrens Im Fall Kontinuierlicher Maße und Im Fall Diskreter Maße

· Augsburger Schriften zur Mathematik, Physik und Informatik Buku 25 · Logos Verlag Berlin GmbH
eBook
170
Halaman
Memenuhi syarat
Rating dan ulasan tidak diverifikasi  Pelajari Lebih Lanjut

Tentang eBook ini

Diese Arbeit untersucht das iterative proportionale Anpassungsverfahren (IPF-Verfahren). Das Verfahren versucht, eine gegebene bivariate Verteilung biproportional an zwei gegebene Randverteilungen anzupassen. Dies geschieht durch abwechselnde Skalierung der vorgegebenen bivariaten Verteilung in jeweils einer Variablen, sodass nach jeder Skalierung die jeweilige Randverteilung mit der festen vorgegebenen Verteilung ubereinstimmt. In der Regel terminiert das IPF-Verfahren nicht nach endlich vielen Schritten, sodass eine Konvergenzanalyse notwendig ist. Dazu wird das Verfahren als alternierende Minimierung von f-Divergenzen beschrieben. Mit Hilfe der I-Divergenz, einer speziellen Klasse von f-Divergenzen, werden einzelne Iterationsschritte uber sogenannte Mehr-Punkte-Eigenschaften in Verbindung gebracht. Aus diesen Eigenschaften leitet sich unter gewissen Regularitatsbedingungen eine Konvergenzaussage des IPF-Verfahrens ab. Unter der Einschrankung auf diskrete Grundraume wird gezeigt, dass das IPF-Verfahren maximal zwei Haufungspunkte hat. Der Trager dieser Haufungspunkte lasst sich ohne Anwendung des IPF-Verfahrens effizient bestimmen, was zu einer Beschleunigung des IPF-Verfahrens beitragen kann. Zuletzt wird die stetige Abhangigkeit der Haufungspunkte von der gegebenen bivariaten Verteilung und den gegebenen Randverteilungen bewiesen.

Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.