Konvergenzverhalten des Iterativen Proportionalen Anpassungsverfahrens Im Fall Kontinuierlicher Maße und Im Fall Diskreter Maße

· Augsburger Schriften zur Mathematik, Physik und Informatik 25 巻 · Logos Verlag Berlin GmbH
電子書籍
170
ページ
利用可能
評価とレビューは確認済みではありません 詳細

この電子書籍について

Diese Arbeit untersucht das iterative proportionale Anpassungsverfahren (IPF-Verfahren). Das Verfahren versucht, eine gegebene bivariate Verteilung biproportional an zwei gegebene Randverteilungen anzupassen. Dies geschieht durch abwechselnde Skalierung der vorgegebenen bivariaten Verteilung in jeweils einer Variablen, sodass nach jeder Skalierung die jeweilige Randverteilung mit der festen vorgegebenen Verteilung ubereinstimmt. In der Regel terminiert das IPF-Verfahren nicht nach endlich vielen Schritten, sodass eine Konvergenzanalyse notwendig ist. Dazu wird das Verfahren als alternierende Minimierung von f-Divergenzen beschrieben. Mit Hilfe der I-Divergenz, einer speziellen Klasse von f-Divergenzen, werden einzelne Iterationsschritte uber sogenannte Mehr-Punkte-Eigenschaften in Verbindung gebracht. Aus diesen Eigenschaften leitet sich unter gewissen Regularitatsbedingungen eine Konvergenzaussage des IPF-Verfahrens ab. Unter der Einschrankung auf diskrete Grundraume wird gezeigt, dass das IPF-Verfahren maximal zwei Haufungspunkte hat. Der Trager dieser Haufungspunkte lasst sich ohne Anwendung des IPF-Verfahrens effizient bestimmen, was zu einer Beschleunigung des IPF-Verfahrens beitragen kann. Zuletzt wird die stetige Abhangigkeit der Haufungspunkte von der gegebenen bivariaten Verteilung und den gegebenen Randverteilungen bewiesen.

この電子書籍を評価する

ご感想をお聞かせください。

読書情報

スマートフォンとタブレット
AndroidiPad / iPhone 用の Google Play ブックス アプリをインストールしてください。このアプリがアカウントと自動的に同期するため、どこでもオンラインやオフラインで読むことができます。
ノートパソコンとデスクトップ パソコン
Google Play で購入したオーディブックは、パソコンのウェブブラウザで再生できます。
電子書籍リーダーなどのデバイス
Kobo 電子書籍リーダーなどの E Ink デバイスで読むには、ファイルをダウンロードしてデバイスに転送する必要があります。サポートされている電子書籍リーダーにファイルを転送する方法について詳しくは、ヘルプセンターをご覧ください。