Konvergenzverhalten des Iterativen Proportionalen Anpassungsverfahrens Im Fall Kontinuierlicher Maße und Im Fall Diskreter Maße

· Augsburger Schriften zur Mathematik, Physik und Informatik 25. kniha · Logos Verlag Berlin GmbH
E‑kniha
170
Počet strán
Vhodné
Hodnotenia a recenzie nie sú overené  Ďalšie informácie

Táto e‑kniha

Diese Arbeit untersucht das iterative proportionale Anpassungsverfahren (IPF-Verfahren). Das Verfahren versucht, eine gegebene bivariate Verteilung biproportional an zwei gegebene Randverteilungen anzupassen. Dies geschieht durch abwechselnde Skalierung der vorgegebenen bivariaten Verteilung in jeweils einer Variablen, sodass nach jeder Skalierung die jeweilige Randverteilung mit der festen vorgegebenen Verteilung ubereinstimmt. In der Regel terminiert das IPF-Verfahren nicht nach endlich vielen Schritten, sodass eine Konvergenzanalyse notwendig ist. Dazu wird das Verfahren als alternierende Minimierung von f-Divergenzen beschrieben. Mit Hilfe der I-Divergenz, einer speziellen Klasse von f-Divergenzen, werden einzelne Iterationsschritte uber sogenannte Mehr-Punkte-Eigenschaften in Verbindung gebracht. Aus diesen Eigenschaften leitet sich unter gewissen Regularitatsbedingungen eine Konvergenzaussage des IPF-Verfahrens ab. Unter der Einschrankung auf diskrete Grundraume wird gezeigt, dass das IPF-Verfahren maximal zwei Haufungspunkte hat. Der Trager dieser Haufungspunkte lasst sich ohne Anwendung des IPF-Verfahrens effizient bestimmen, was zu einer Beschleunigung des IPF-Verfahrens beitragen kann. Zuletzt wird die stetige Abhangigkeit der Haufungspunkte von der gegebenen bivariaten Verteilung und den gegebenen Randverteilungen bewiesen.

Ohodnoťte túto elektronickú knihu

Povedzte nám svoj názor.

Informácie o dostupnosti

Smartfóny a tablety
Nainštalujte si aplikáciu Knihy Google Play pre AndroidiPad/iPhone. Automaticky sa synchronizuje s vaším účtom a umožňuje čítať online aj offline, nech už ste kdekoľvek.
Laptopy a počítače
Audioknihy zakúpené v službe Google Play môžete počúvať prostredníctvom webového prehliadača v počítači.
Čítačky elektronických kníh a ďalšie zariadenia
Ak chcete tento obsah čítať v zariadeniach využívajúcich elektronický atrament, ako sú čítačky e‑kníh Kobo, musíte stiahnuť príslušný súbor a preniesť ho do svojho zariadenia. Pri prenose súborov do podporovaných čítačiek e‑kníh postupujte podľa podrobných pokynov v centre pomoci.