Konvergenzverhalten des Iterativen Proportionalen Anpassungsverfahrens Im Fall Kontinuierlicher Maße und Im Fall Diskreter Maße

· Augsburger Schriften zur Mathematik, Physik und Informatik 25. књига · Logos Verlag Berlin GmbH
Е-књига
170
Страница
Испуњава услове
Оцене и рецензије нису верификоване  Сазнајте више

О овој е-књизи

Diese Arbeit untersucht das iterative proportionale Anpassungsverfahren (IPF-Verfahren). Das Verfahren versucht, eine gegebene bivariate Verteilung biproportional an zwei gegebene Randverteilungen anzupassen. Dies geschieht durch abwechselnde Skalierung der vorgegebenen bivariaten Verteilung in jeweils einer Variablen, sodass nach jeder Skalierung die jeweilige Randverteilung mit der festen vorgegebenen Verteilung ubereinstimmt. In der Regel terminiert das IPF-Verfahren nicht nach endlich vielen Schritten, sodass eine Konvergenzanalyse notwendig ist. Dazu wird das Verfahren als alternierende Minimierung von f-Divergenzen beschrieben. Mit Hilfe der I-Divergenz, einer speziellen Klasse von f-Divergenzen, werden einzelne Iterationsschritte uber sogenannte Mehr-Punkte-Eigenschaften in Verbindung gebracht. Aus diesen Eigenschaften leitet sich unter gewissen Regularitatsbedingungen eine Konvergenzaussage des IPF-Verfahrens ab. Unter der Einschrankung auf diskrete Grundraume wird gezeigt, dass das IPF-Verfahren maximal zwei Haufungspunkte hat. Der Trager dieser Haufungspunkte lasst sich ohne Anwendung des IPF-Verfahrens effizient bestimmen, was zu einer Beschleunigung des IPF-Verfahrens beitragen kann. Zuletzt wird die stetige Abhangigkeit der Haufungspunkte von der gegebenen bivariaten Verteilung und den gegebenen Randverteilungen bewiesen.

Оцените ову е-књигу

Јавите нам своје мишљење.

Информације о читању

Паметни телефони и таблети
Инсталирајте апликацију Google Play књиге за Android и iPad/iPhone. Аутоматски се синхронизује са налогом и омогућава вам да читате онлајн и офлајн где год да се налазите.
Лаптопови и рачунари
Можете да слушате аудио-књиге купљене на Google Play-у помоћу веб-прегледача на рачунару.
Е-читачи и други уређаји
Да бисте читали на уређајима које користе е-мастило, као што су Kobo е-читачи, треба да преузмете фајл и пренесете га на уређај. Пратите детаљна упутства из центра за помоћ да бисте пренели фајлове у подржане е-читаче.