Konvexe Analysis

· Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften Boek 54 · Springer-Verlag
E-boek
273
Bladsye
Graderings en resensies word nie geverifieer nie. Kom meer te wete

Meer oor hierdie e-boek

Der Autor beabsichtigt, mit dem vorliegenden Lehrbuch eine gründliche Einführung in die Theorie der konvexen Mengen und der konvexen Funk tionen zu geben. Das Buch ist aus einer Folge von drei in den Jahren 1971 bis 1973 an der Eidgenössischen Technischen Hochschule in Zürich gehaltenen Vorlesungen hervorgegangen. Es erläutert die verschiedenen, für viele Sparten der Analysis, der angewandten Mathematik und der mathematischen Ökonomie relevanten Aspekte der Konvexität. Die konvexe Analysis ist, wie die lineare Algebra, ein Gebiet der Mathematik, welches neben der analytischen Beschreib- und Beweisbarkeit oft auch eine hohe geometrische Anschaulichkeit besitzt. Fast die meisten der hier be schriebenen Ergebnisse über konvexe Mengen und Funktionen gehören offen sichtlich der reinen Mathematik an. Es ist aber auffallend, wie häufig diese Ergebnisse die Gundiage, nicht nur von Teilen der höheren Analysis, sondern auch von Theorien und Methoden der angewandten Mathematik bilden. Einiges Gewicht wird deshalb in diesem Lehrbuch darauf gelegt, zu zeigen, wie die Resultate ausserhalb des Gebietes Anwendung finden, z. B. in der reinen Mathematik bei Existenzsätzen für lineare und nichtlineare Differential-oder Integralgleichungen, in der angewandten Mathematik für die Approximations theorie oder in der mathematischen Ökonomie für Existenzaussagen über Minima konvexer Funktionen und über Lösungen von Systemen von Ungleichungen. Um die Allgemeingültigkeit vieler fundamentaler Resultate nicht zu schmälern, wurde darauf geachtet, die entsprechenden Voraus setzungen an die Topologie und Strukturen der Räume so schwach wie möglich zu halten.

Gradeer hierdie e-boek

Sê vir ons wat jy dink.

Lees inligting

Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.