Fossil fuels are still the dominant (ca. 80%) energy source in our society. A significant fraction is used to generate electricity with a heat engine possessing an efficiency of approximately 35%. Therefore, about 65% of fossil fuel energy is wasted in heat. Other primary heat sources include solar and geothermal energies that can heat up solid and fluids up to 150°C. The growing demand and severe environmental impact of energy systems provide an impetus for effective management and harvesting solutions dealing with waste heat. A promising way to use waste heat is to directly convert thermal energy into electrical energy by thermoelectric generators (TEGs). Solid state TEGs are electronic devices that generate electrical power due to the thermo-diffusion of electronic charge carriers in the semiconductor upon application of the thermal field. However, there is another type of thermoelectric device that has been much less investigated; this is the thermogalvanic cell (TGCs). The TGC is an electrochemical device that consists of the electrolyte solution including a reversible redox couple sandwiched between two electrodes. In our study, we focus on iron-based organometallic molecules in aqueous electrolyte. A temperature difference (???) between the electrodes promotes a difference in the electrode potentials [???(??)]. Since the electrolyte contains a redox couple acting like electronic shuttle between the two electrodes, power can be generated when the two electrodes are submitted to a temperature difference. The focus of this thesis is (i) to investigate the possibility to use conducting polymer electrodes for thermogalvanic cells as an alternative to platinum and carbon-based electrodes, (ii) to investigate the role of viscosity of the electrolyte in order to consider polymer electrolytes, (iii) to understand the mechanisms limiting the electrical power output in TGCs; and (iv) to understand the fundamentals of the electron transfer taking place at the interface between the polymer electrode and the redox molecule in the electrolyte. These findings provide an essential toolbox for further improvement in conducting polymer thermogalvanic cells and various other emerging electrochemical technologies such as fuel cells, redox flow battery, dye-sensitized solar cells and industrial electrochemical synthesis.