In this volume three important papers of M.G. Krein appear for the first time in English translation. Each of them is a short self-contained monograph, each a masterpiece of exposition. Although two of them were written more than twenty years ago, the passage of time has not decreased their value. They are as fresh and vital as if they had been written only yesterday. These papers contain a wealth of ideas, and will serve as a source of stimulation and inspiration for experts and beginners alike. The first paper is dedicated to the theory of canonical linear differential equations, with periodic coefficients. It focuses on the study of linear Hamiltonian systems with bounded solutions which stay bounded under small perturbations of the system. The paper uses methods from operator theory in finite and infinite dimensional spaces and complex analysis. For an account of more recent literature which was generated by this paper see AMS Translations (2), Volume 93, 1970, pages 103-176 and Integral Equations and Operator Theory, Volume 5, Number 5, 1982, pages 718-757.