Computational Biology and Machine Learning for Metabolic Engineering and Synthetic Biology

· Methods in molecular biology Book 1 · Springer Nature
Ebook
455
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This volume provides protocols for computational, statistical, and machine learning methods that are mainly applied to the study of metabolic engineering, synthetic biology, and disease applications. These techniques support the latest progress in cross-disciplinary research that integrates the different scales of biological complexity. The topics covered in this book are geared toward researchers with a background in engineering, computational analytical, and modeling experience and cover a broad range of topics in computational and machine learning approaches. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.

Comprehensive and practical, Computational Biology and Machine Learning for Metabolic Engineering and Synthetic Biology is a valuable resource for any researcher or scientist who wants to learn more about the latest computational methods and how they are applied toward the understanding and prediction of complex biology.


Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.