janv. 2009 · Mathematical Surveys and MonographsLivre 153 · American Mathematical Soc.
E-book
202
Pages
Extrait
reportLes notes et avis ne sont pas vérifiés. En savoir plus
À propos de cet e-book
Since the early part of the twentieth century, the use of integral equations has developed into a range of tools for the study of partial differential equations. This includes the use of single- and double-layer potentials to treat classical boundary value problems. The aim of this book is to give a self-contained presentation of an asymptotic theory for eigenvalue problems using layer potential techniques with applications in the fields of inverse problems, band gap structures, and optimal design, in particular the optimal design of photonic and phononic crystals. Throughout this book, it is shown how powerful the layer potentials techniques are for solving not only boundary value problems but also eigenvalue problems if they are combined with the elegant theory of Gohberg and Sigal on meromorphic operator-valued functions. The general approach in this book is developed in detail for eigenvalue problems for the Laplacian and the Lame system in the following two situations: one under variation of domains or boundary conditions and the other due to the presence of inclusions. The book will be of interest to researchers and graduate students working in the fields of partial differential equations, integral equations, and inverse problems. Researchers in engineering and physics may also find this book helpful.
Série
Donner une note à cet e-book
Dites-nous ce que vous en pensez.
Informations sur la lecture
Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.