Lectures on Closed Geodesics

· Grundlehren der mathematischen Wissenschaften 230. grāmata · Springer Science & Business Media
E-grāmata
230
Lappuses
Atsauksmes un vērtējumi nav pārbaudīti. Uzzināt vairāk

Par šo e-grāmatu

The question of existence of c10sed geodesics on a Riemannian manifold and the properties of the corresponding periodic orbits in the geodesic flow has been the object of intensive investigations since the beginning of global differential geo metry during the last century. The simplest case occurs for c10sed surfaces of negative curvature. Here, the fundamental group is very large and, as shown by Hadamard [Had] in 1898, every non-null homotopic c10sed curve can be deformed into a c10sed curve having minimallength in its free homotopy c1ass. This minimal curve is, up to the parameterization, uniquely determined and represents a c10sed geodesic. The question of existence of a c10sed geodesic on a simply connected c10sed surface is much more difficult. As pointed out by Poincare [po 1] in 1905, this problem has much in common with the problem ofthe existence of periodic orbits in the restricted three body problem. Poincare [l.c.] outlined a proof that on an analytic convex surface which does not differ too much from the standard sphere there always exists at least one c10sed geodesic of elliptic type, i. e., the corres ponding periodic orbit in the geodesic flow is infinitesimally stable.

Novērtējiet šo e-grāmatu

Izsakiet savu viedokli!

Informācija lasīšanai

Viedtālruņi un planšetdatori
Instalējiet lietotni Google Play grāmatas Android ierīcēm un iPad planšetdatoriem/iPhone tālruņiem. Lietotne tiks automātiski sinhronizēta ar jūsu kontu un ļaus lasīt saturu tiešsaistē vai bezsaistē neatkarīgi no jūsu atrašanās vietas.
Klēpjdatori un galddatori
Varat klausīties pakalpojumā Google Play iegādātās audiogrāmatas, izmantojot datora tīmekļa pārlūkprogrammu.
E-lasītāji un citas ierīces
Lai lasītu grāmatas tādās elektroniskās tintes ierīcēs kā Kobo e-lasītāji, nepieciešams lejupielādēt failu un pārsūtīt to uz savu ierīci. Izpildiet palīdzības centrā sniegtos detalizētos norādījumus, lai pārsūtītu failus uz atbalstītiem e-lasītājiem.