Lectures on Convex Geometry

· Graduate Texts in Mathematics Livre 286 · Springer Nature
E-book
287
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

This book provides a self-contained introduction to convex geometry in Euclidean space. After covering the basic concepts and results, it develops Brunn–Minkowski theory, with an exposition of mixed volumes, the Brunn–Minkowski inequality, and some of its consequences, including the isoperimetric inequality. Further central topics are then treated, such as surface area measures, projection functions, zonoids, and geometric valuations. Finally, an introduction to integral-geometric formulas in Euclidean space is provided. The numerous exercises and the supplementary material at the end of each section form an essential part of the book.

Convexity is an elementary and natural concept. It plays a key role in many mathematical fields, including functional analysis, optimization, probability theory, and stochastic geometry.

Paving the way to the more advanced and specialized literature, the material will be accessible to students in the third year and can be covered in one semester.


À propos de l'auteur

Prof. Dr. Daniel Hug (1965–) obtained his Ph.D. in Mathematics (1994) and Habilitation (2000) at Univ. Freiburg. He was an assistant Professor at TU Vienna (2000), trained and acted as a High School Teacher (2005–2007), was Professor in Duisburg-Essen (2007), Associate Professor in Karlsruhe (2007–2011), and has been a Professor in Karlsruhe since 2011.

Prof. Dr. Wolfgang Weil (1945–2018) obtained his Ph.D. in Mathematics at Univ. Frankfurt/Main in 1971 and his Habilitation in Freiburg (1976). He was an Assistant Professor in Berlin and Freiburg, Akad. Rat in Freiburg (1978–1980), and was a Professor in Karlsruhe from 1980. He was a Guest Professor in Norman, Oklahoma, USA (1985 and 1990).

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.