Lectures on Convex Geometry

· Graduate Texts in Mathematics Livro 286 · Springer Nature
Livro eletrónico
287
Páginas
As classificações e as críticas não são validadas  Saiba mais

Acerca deste livro eletrónico

This book provides a self-contained introduction to convex geometry in Euclidean space. After covering the basic concepts and results, it develops Brunn–Minkowski theory, with an exposition of mixed volumes, the Brunn–Minkowski inequality, and some of its consequences, including the isoperimetric inequality. Further central topics are then treated, such as surface area measures, projection functions, zonoids, and geometric valuations. Finally, an introduction to integral-geometric formulas in Euclidean space is provided. The numerous exercises and the supplementary material at the end of each section form an essential part of the book.

Convexity is an elementary and natural concept. It plays a key role in many mathematical fields, including functional analysis, optimization, probability theory, and stochastic geometry.

Paving the way to the more advanced and specialized literature, the material will be accessible to students in the third year and can be covered in one semester.


Acerca do autor

Prof. Dr. Daniel Hug (1965–) obtained his Ph.D. in Mathematics (1994) and Habilitation (2000) at Univ. Freiburg. He was an assistant Professor at TU Vienna (2000), trained and acted as a High School Teacher (2005–2007), was Professor in Duisburg-Essen (2007), Associate Professor in Karlsruhe (2007–2011), and has been a Professor in Karlsruhe since 2011.

Prof. Dr. Wolfgang Weil (1945–2018) obtained his Ph.D. in Mathematics at Univ. Frankfurt/Main in 1971 and his Habilitation in Freiburg (1976). He was an Assistant Professor in Berlin and Freiburg, Akad. Rat in Freiburg (1978–1980), and was a Professor in Karlsruhe from 1980. He was a Guest Professor in Norman, Oklahoma, USA (1985 and 1990).

Classifique este livro eletrónico

Dê-nos a sua opinião.

Informações de leitura

Smartphones e tablets
Instale a app Google Play Livros para Android e iPad/iPhone. A aplicação é sincronizada automaticamente com a sua conta e permite-lhe ler online ou offline, onde quer que esteja.
Portáteis e computadores
Pode ouvir audiolivros comprados no Google Play através do navegador de Internet do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos e-ink, como e-readers Kobo, tem de transferir um ficheiro e movê-lo para o seu dispositivo. Siga as instruções detalhadas do Centro de Ajuda para transferir os ficheiros para os e-readers suportados.