Lie Groups Beyond an Introduction

· Progress in Mathematics Boek 140 · Springer Science & Business Media
E-boek
608
Pagina's
Beoordelingen en reviews worden niet geverifieerd. Meer informatie

Over dit e-boek

Fifty years ago Claude Chevalley revolutionized Lie theory by pub lishing his classic Theory of Lie Groups I. Before his book Lie theory was a mixture of local and global results. As Chevalley put it, "This limitation was probably necessary as long as general topology was not yet sufficiently well elaborated to provide a solid base for a theory in the large. These days are now passed:' Indeed, they are passed because Chevalley's book changed matters. Chevalley made global Lie groups into the primary objects of study. In his third and fourth chapters he introduced the global notion of ana lytic subgroup, so that Lie subalgebras corresponded exactly to analytic subgroups. This correspondence is now taken as absolutely standard, and any introduction to general Lie groups has to have it at its core. Nowadays "local Lie groups" are a thing of the past; they arise only at one point in the development, and only until Chevalley's results have been stated and have eliminated the need for the local theory. But where does the theory go from this point? Fifty years after Cheval ley's book, there are clear topics: E. Cartan's completion ofW. Killing's work on classifying complex semisimple Lie algebras, the treatment of finite-dimensional representations of complex semisimple Lie algebras and compact Lie groups by Cartan and H. Weyl, the structure theory begun by Cartan for real semisimple Lie algebras and Lie groups, and harmonic analysis in the setting of semisimple groups as begun by Cartan and Weyl.

Dit e-boek beoordelen

Geef ons je mening.

Informatie over lezen

Smartphones en tablets
Installeer de Google Play Boeken-app voor Android en iPad/iPhone. De app wordt automatisch gesynchroniseerd met je account en met de app kun je online of offline lezen, waar je ook bent.
Laptops en computers
Via de webbrowser van je computer kun je luisteren naar audioboeken die je hebt gekocht op Google Play.
eReaders en andere apparaten
Als je wilt lezen op e-ink-apparaten zoals e-readers van Kobo, moet je een bestand downloaden en overzetten naar je apparaat. Volg de gedetailleerde instructies in het Helpcentrum om de bestanden over te zetten op ondersteunde e-readers.