Linear Algebra

· Springer Science & Business Media
E‑kniha
280
Počet strán
Hodnotenia a recenzie nie sú overené  Ďalšie informácie

Táto e‑kniha

This text is written for a course in linear algebra at the (U.S.) sophomore undergraduate level, preferably directly following a one-variable calculus course, so that linear algebra can be used in a course on multidimensional calculus. Realizing that students at this level have had little contact with complex numbers or abstract mathematics the book deals almost exclusively with real finite-dimensional vector spaces in a setting and formulation that permits easy generalization to abstract vector spaces. The parallel complex theory is developed in the exercises. The book has as a goal the principal axis theorem for real symmetric transformations, and a more or less direct path is followed. As a consequence there are many subjects that are not developed, and this is intentional. However a wide selection of examples of vector spaces and linear trans formations is developed, in the hope that they will serve as a testing ground for the theory. The book is meant as an introduction to linear algebra and the theory developed contains the essentials for this goal. Students with a need to learn more linear algebra can do so in a course in abstract algebra, which is the appropriate setting. Through this book they will be taken on an excursion to the algebraic/analytic zoo, and introduced to some of the animals for the first time. Further excursions can teach them more about the curious habits of some of these remarkable creatures.

Ohodnoťte túto elektronickú knihu

Povedzte nám svoj názor.

Informácie o dostupnosti

Smartfóny a tablety
Nainštalujte si aplikáciu Knihy Google Play pre AndroidiPad/iPhone. Automaticky sa synchronizuje s vaším účtom a umožňuje čítať online aj offline, nech už ste kdekoľvek.
Laptopy a počítače
Audioknihy zakúpené v službe Google Play môžete počúvať prostredníctvom webového prehliadača v počítači.
Čítačky elektronických kníh a ďalšie zariadenia
Ak chcete tento obsah čítať v zariadeniach využívajúcich elektronický atrament, ako sú čítačky e‑kníh Kobo, musíte stiahnuť príslušný súbor a preniesť ho do svojho zariadenia. Pri prenose súborov do podporovaných čítačiek e‑kníh postupujte podľa podrobných pokynov v centre pomoci.