Linear Algebra: Edition 2

· Grundlehren der mathematischen Wissenschaften Βιβλίο 97 · Springer
ebook
338
Σελίδες
Οι αξιολογήσεις και οι κριτικές δεν επαληθεύονται  Μάθετε περισσότερα

Σχετικά με το ebook

Besides the very obvious change from German to English, the second edition of this book contains many additions as weil as a great many other changes. It might even be called a new book altogether were it not for the fact that the essential character of the book has remained the same; in other words, the entire presentation continues to be based on an axiomatic treatment of linear spaces. In this second edition, the thorough-going restriction to linear spaces of finite dimension has been removed. Another complete change is the restriction to linear spaces with real or complex coefficients, thereby removing a number of relatively involved discussions which did not really contribute substantially to the subject. On p.6 there is a list of those chapters in which the presentation can be transferred directly to spaces over an arbitrary coefficient field. Chapter I deals with the general properties of a linear space. Those concepts which are only valid for finitely many dimensions are discussed in a special paragraph. Chapter 11 now covers only linear transformations while the treat ment of matrices has been delegated to a new chapter, chapter 111. The discussion of dual spaces has been changed; dual spaces are now intro duced abstractly and the connection with the space of linear functions is not established untillater.

Αξιολογήστε αυτό το ebook

Πείτε μας τη γνώμη σας.

Πληροφορίες ανάγνωσης

Smartphone και tablet
Εγκαταστήστε την εφαρμογή Βιβλία Google Play για Android και iPad/iPhone. Συγχρονίζεται αυτόματα με τον λογαριασμό σας και σας επιτρέπει να διαβάζετε στο διαδίκτυο ή εκτός σύνδεσης, όπου κι αν βρίσκεστε.
Φορητοί και επιτραπέζιοι υπολογιστές
Μπορείτε να ακούσετε ηχητικά βιβλία τα οποία αγοράσατε στο Google Play, χρησιμοποιώντας το πρόγραμμα περιήγησης στον ιστό του υπολογιστή σας.
eReader και άλλες συσκευές
Για να διαβάσετε περιεχόμενο σε συσκευές e-ink, όπως είναι οι συσκευές Kobo eReader, θα χρειαστεί να κατεβάσετε ένα αρχείο και να το μεταφέρετε στη συσκευή σας. Ακολουθήστε τις αναλυτικές οδηγίες του Κέντρου βοήθειας για να μεταφέρετε αρχεία σε υποστηριζόμενα eReader.