Linear Algebra: Edition 2

· Grundlehren der mathematischen Wissenschaften წიგნი 97 · Springer
ელწიგნი
338
გვერდი
რეიტინგები და მიმოხილვები დაუდასტურებელია  შეიტყვეთ მეტი

ამ ელწიგნის შესახებ

Besides the very obvious change from German to English, the second edition of this book contains many additions as weil as a great many other changes. It might even be called a new book altogether were it not for the fact that the essential character of the book has remained the same; in other words, the entire presentation continues to be based on an axiomatic treatment of linear spaces. In this second edition, the thorough-going restriction to linear spaces of finite dimension has been removed. Another complete change is the restriction to linear spaces with real or complex coefficients, thereby removing a number of relatively involved discussions which did not really contribute substantially to the subject. On p.6 there is a list of those chapters in which the presentation can be transferred directly to spaces over an arbitrary coefficient field. Chapter I deals with the general properties of a linear space. Those concepts which are only valid for finitely many dimensions are discussed in a special paragraph. Chapter 11 now covers only linear transformations while the treat ment of matrices has been delegated to a new chapter, chapter 111. The discussion of dual spaces has been changed; dual spaces are now intro duced abstractly and the connection with the space of linear functions is not established untillater.

შეაფასეთ ეს ელწიგნი

გვითხარით თქვენი აზრი.

ინფორმაცია წაკითხვასთან დაკავშირებით

სმარტფონები და ტაბლეტები
დააინსტალირეთ Google Play Books აპი Android და iPad/iPhone მოწყობილობებისთვის. ის ავტომატურად განახორციელებს სინქრონიზაციას თქვენს ანგარიშთან და საშუალებას მოგცემთ, წაიკითხოთ სასურველი კონტენტი ნებისმიერ ადგილას, როგორც ონლაინ, ისე ხაზგარეშე რეჟიმში.
ლეპტოპები და კომპიუტერები
Google Play-ში შეძენილი აუდიოწიგნების მოსმენა თქვენი კომპიუტერის ვებ-ბრაუზერის გამოყენებით შეგიძლიათ.
ელწამკითხველები და სხვა მოწყობილობები
ელექტრონული მელნის მოწყობილობებზე წასაკითხად, როგორიცაა Kobo eReaders, თქვენ უნდა ჩამოტვირთოთ ფაილი და გადაიტანოთ იგი თქვენს მოწყობილობაში. დახმარების ცენტრის დეტალური ინსტრუქციების მიხედვით გადაიტანეთ ფაილები მხარდაჭერილ ელწამკითხველებზე.