Linear Algebra for the Sciences

·
· UNITEXT Cartea 151 · Springer Nature
Carte electronică
259
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

This book is based on a course for first-semester science students, held by the second author at the University of Zurich several times. Its goal is threefold: to have students learn a minimal working knowledge of linear algebra, acquire some computational skills, and familiarize them with mathematical language to make mathematical literature more accessible. Therefore, we give precise definitions, introduce helpful notations, and state any results carefully worded. We provide no proofs of these results but typically illustrate them with numerous examples. Additionally, for better understanding, we often give supporting arguments for why they are valid.

Despre autor


Manuel Benz is a high school teacher working in Zurich. After his studies in theoretical particle physics and mathematics, he taught, together with Thomas Kappeler, several courses at the University of Zurich. The courses' goal: To find a bridge between high school and university mathematics and to motivate young students to pursue their studies in mathematics.​
Thomas Kappeler was an Emeritus Professor at the University of Zurich. He started his academic career with a thesis on bilinear integrals, was a visiting professor at four universities in the United States and following a professorship at the Ohio State University, he was appointed professor at the University of Zurich. His research focused, among others, on global analysis and dynamical systems. In his lectures, he took great care to present the topics with precision and clarity.



Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.