Linear Discrete Parabolic Problems

· North-Holland Mathematics Studies 203 巻 · Elsevier
電子書籍
302
ページ
利用可能
評価とレビューは確認済みではありません 詳細

この電子書籍について

This volume introduces a unified, self-contained study of linear discrete parabolic problems through reducing the starting discrete problem to the Cauchy problem for an evolution equation in discrete time. Accessible to beginning graduate students, the book contains a general stability theory of discrete evolution equations in Banach space and gives applications of this theory to the analysis of various classes of modern discretization methods, among others, Runge-Kutta and linear multistep methods as well as operator splitting methods.Key features:* Presents a unified approach to examining discretization methods for parabolic equations.* Highlights a stability theory of discrete evolution equations (discrete semigroups) in Banach space.* Deals with both autonomous and non-autonomous equations as well as with equations with memory.* Offers a series of numerous well-posedness and convergence results for various discretization methods as applied to abstract parabolic equations; among others, Runge-Kutta and linear multistep methods as well as certain operator splitting methods.* Provides comments of results and historical remarks after each chapter.· Presents a unified approach to examining discretization methods for parabolic equations.· Highlights a stability theory of discrete evolution equations (discrete semigroups) in Banach space.· Deals with both autonomous and non-autonomous equations as well as with equations with memory.· Offers a series of numerous well-posedness and convergence results for various discretization methods as applied to abstract parabolic equations; among others, Runge-Kutta and linear multistep methods as well as certain operator splitting methods as well as certain operator splitting methods are studied in detail.·Provides comments of results and historical remarks after each chapter.

この電子書籍を評価する

ご感想をお聞かせください。

読書情報

スマートフォンとタブレット
AndroidiPad / iPhone 用の Google Play ブックス アプリをインストールしてください。このアプリがアカウントと自動的に同期するため、どこでもオンラインやオフラインで読むことができます。
ノートパソコンとデスクトップ パソコン
Google Play で購入したオーディブックは、パソコンのウェブブラウザで再生できます。
電子書籍リーダーなどのデバイス
Kobo 電子書籍リーダーなどの E Ink デバイスで読むには、ファイルをダウンロードしてデバイスに転送する必要があります。サポートされている電子書籍リーダーにファイルを転送する方法について詳しくは、ヘルプセンターをご覧ください。