Linear Models with Python

¡ CRC Press
ā§Ē.ā§Ļ
ā§¨ āĻŸāĻž āĻĒā§°ā§āĻ¯āĻžāĻ˛ā§‹āĻšāĻ¨āĻž
āĻ‡āĻŦā§āĻ•
308
āĻĒā§ƒāĻˇā§āĻ āĻž
āĻ¯ā§‹āĻ—ā§āĻ¯
āĻŽā§‚āĻ˛ā§āĻ¯āĻžāĻ‚āĻ•āĻ¨ āĻ†ā§°ā§ āĻĒā§°ā§āĻ¯āĻžāĻ˛ā§‹āĻšāĻ¨āĻž āĻ¸āĻ¤ā§āĻ¯āĻžāĻĒāĻ¨ āĻ•ā§°āĻž āĻšā§‹ā§ąāĻž āĻ¨āĻžāĻ‡  āĻ…āĻ§āĻŋāĻ• āĻœāĻžāĻ¨āĻ•

āĻāĻ‡ āĻ‡āĻŦā§āĻ•āĻ–āĻ¨ā§° āĻŦāĻŋāĻˇā§Ÿā§‡

Praise for Linear Models with R:

This book is a must-have tool for anyone interested in understanding and applying linear models. The logical ordering of the chapters is well thought out and portrays Faraway’s wealth of experience in teaching and using linear models. ... It lays down the material in a logical and intricate manner and makes linear modeling appealing to researchers from virtually all fields of study. -Biometrical Journal

Throughout, it gives plenty of insight ... with comments that even the seasoned practitioner will appreciate. Interspersed with R code and the output that it produces one can find many little gems of what I think is sound statistical advice, well epitomized with the examples chosen...I read it with delight and think that the same will be true with anyone who is engaged in the use or teaching of linear models. -Journal of the Royal Statistical Society

Like its widely praised, best-selling companion version, Linear Models with R, this book replaces R with Python to seamlessly give a coherent exposition of the practice of linear modeling. Linear Models with Python offers up-to-date insight on essential data analysis topics, from estimation, inference and prediction to missing data, factorial models and block designs. Numerous examples illustrate how to apply the different methods using Python.

Features:

  • Python is a powerful, open source programming language increasingly being used in data science, machine learning and computer science. Python and R are similar, but R was designed for statistics, while Python is multi-talented.
  • This version replaces R with Python to make it accessible to a greater number of users outside of statistics, including those from Machine Learning.
  • A reader coming to this book from an ML background will learn new statistical perspectives on learning from data.
  • Topics include Model Selection, Shrinkage, Experiments with Blocks and Missing Data.
  • Includes an Appendix on Python for beginners.

Linear Models with Python explains how to use linear models in physical science, engineering, social science and business applications. It is ideal as a textbook for linear models or linear regression courses.

āĻŽā§‚āĻ˛ā§āĻ¯āĻžāĻ‚āĻ•āĻ¨ āĻ†ā§°ā§ āĻĒā§°ā§āĻ¯āĻžāĻ˛ā§‹āĻšāĻ¨āĻžāĻ¸āĻŽā§‚āĻš

ā§Ē.ā§Ļ
ā§¨ āĻŸāĻž āĻĒā§°ā§āĻ¯āĻžāĻ˛ā§‹āĻšāĻ¨āĻž

āĻ˛āĻŋāĻ–āĻ•ā§° āĻŦāĻŋāĻˇāĻ¯āĻŧā§‡

Julian J. Faraway is a professor of statistics in the Department of Mathematical Sciences at the University of Bath. His research focuses on the analysis of functional and shape data with particular application to the modeling of human motion. He earned a PhD in statistics from the University of California, Berkeley.

āĻāĻ‡ āĻ‡āĻŦā§āĻ•āĻ–āĻ¨āĻ• āĻŽā§‚āĻ˛ā§āĻ¯āĻžāĻ‚āĻ•āĻ¨ āĻ•ā§°āĻ•

āĻ†āĻŽāĻžāĻ• āĻ†āĻĒā§‹āĻ¨āĻžā§° āĻŽāĻ¤āĻžāĻŽāĻ¤ āĻœāĻ¨āĻžāĻ“āĻ•āĨ¤

āĻĒāĻĸāĻŧāĻžā§° āĻ¨āĻŋāĻ°ā§āĻĻā§‡āĻļāĻžā§ąāĻ˛ā§€

āĻ¸ā§āĻŽāĻžā§°ā§āĻŸāĻĢ’āĻ¨ āĻ†ā§°ā§ āĻŸā§‡āĻŦāĻ˛ā§‡āĻŸ
Android āĻ†ā§°ā§ iPad/iPhoneā§° āĻŦāĻžāĻŦā§‡ Google Play Books āĻāĻĒāĻŸā§‹ āĻ‡āĻ¨āĻˇā§āĻŸāĻ˛ āĻ•ā§°āĻ•āĨ¤ āĻ‡ āĻ¸ā§āĻŦāĻ¯āĻŧāĻ‚āĻ•ā§āĻ°āĻŋāĻ¯āĻŧāĻ­āĻžā§ąā§‡ āĻ†āĻĒā§‹āĻ¨āĻžā§° āĻāĻ•āĻžāĻ‰āĻŖā§āĻŸā§° āĻ¸ā§ˆāĻ¤ā§‡ āĻ›āĻŋāĻ‚āĻ• āĻšāĻ¯āĻŧ āĻ†ā§°ā§ āĻ†āĻĒā§āĻ¨āĻŋ āĻ¯'āĻ¤ā§‡ āĻ¨āĻžāĻĨāĻžāĻ•āĻ• āĻ¤'āĻ¤ā§‡āĻ‡ āĻ•ā§‹āĻ¨ā§‹ āĻ…āĻĄāĻŋāĻ…'āĻŦā§āĻ• āĻ…āĻ¨āĻ˛āĻžāĻ‡āĻ¨ āĻŦāĻž āĻ…āĻĢāĻ˛āĻžāĻ‡āĻ¨āĻ¤ āĻļā§āĻ¨āĻŋāĻŦāĻ˛ā§ˆ āĻ¸ā§āĻŦāĻŋāĻ§āĻž āĻĻāĻŋāĻ¯āĻŧā§‡āĨ¤
āĻ˛ā§‡āĻĒāĻŸāĻĒ āĻ†ā§°ā§ āĻ•āĻŽā§āĻĒāĻŋāĻ‰āĻŸāĻžā§°
āĻ†āĻĒā§āĻ¨āĻŋ āĻ•āĻŽā§āĻĒāĻŋāĻ‰āĻŸāĻžā§°ā§° ā§ąā§‡āĻŦ āĻŦā§āĻ°āĻžāĻ‰āĻœāĻžā§° āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āĻ•ā§°āĻŋ Google PlayāĻ¤ āĻ•āĻŋāĻ¨āĻž āĻ…āĻĄāĻŋāĻ…'āĻŦā§āĻ•āĻ¸āĻŽā§‚āĻš āĻļā§āĻ¨āĻŋāĻŦ āĻĒāĻžā§°ā§‡āĨ¤
āĻ‡-ā§°ā§€āĻĄāĻžā§° āĻ†ā§°ā§ āĻ…āĻ¨ā§āĻ¯ āĻĄāĻŋāĻ­āĻžāĻ‡āĻš
Kobo eReadersā§° āĻĻā§°ā§‡ āĻ‡-āĻšāĻŋā§ŸāĻžāĻāĻšā§€ā§° āĻĄāĻŋāĻ­āĻžāĻ‡āĻšāĻ¸āĻŽā§‚āĻšāĻ¤ āĻĒā§āĻŋāĻŦāĻ˛ā§ˆ, āĻ†āĻĒā§āĻ¨āĻŋ āĻāĻŸāĻž āĻĢāĻžāĻ‡āĻ˛ āĻĄāĻžāĻ‰āĻ¨āĻ˛â€™āĻĄ āĻ•ā§°āĻŋ āĻ¸ā§‡āĻ‡āĻŸā§‹ āĻ†āĻĒā§‹āĻ¨āĻžā§° āĻĄāĻŋāĻ­āĻžāĻ‡āĻšāĻ˛ā§ˆ āĻ¸ā§āĻĨāĻžāĻ¨āĻžāĻ¨ā§āĻ¤ā§°āĻŖ āĻ•ā§°āĻŋāĻŦ āĻ˛āĻžāĻ—āĻŋāĻŦāĨ¤ āĻ¸āĻŽā§°ā§āĻĨāĻŋāĻ¤ āĻ‡-ā§°āĻŋāĻĄāĻžā§°āĻ˛ā§ˆ āĻĢāĻžāĻ‡āĻ˛āĻŸā§‹ āĻ•ā§‡āĻ¨ā§‡āĻ•ā§ˆ āĻ¸ā§āĻĨāĻžāĻ¨āĻžāĻ¨ā§āĻ¤ā§° āĻ•ā§°āĻŋāĻŦ āĻœāĻžāĻ¨āĻŋāĻŦāĻ˛ā§ˆ āĻ¸āĻšāĻžāĻ¯āĻŧ āĻ•ā§‡āĻ¨ā§āĻĻā§ā§°āĻ¤ āĻĨāĻ•āĻž āĻ¸āĻŦāĻŋāĻļā§‡āĻˇ āĻ¨āĻŋā§°ā§āĻĻā§‡āĻļāĻžā§ąāĻ˛ā§€ āĻšāĻžāĻ“āĻ•āĨ¤