Linear Optimization and Extensions: Edition 2

· Algorithms and Combinatorics Cartea 12 · Springer Science & Business Media
Carte electronică
501
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

I was pleasantly surprised when I was asked by Springer-Verlag to prepare a second edition of this volume on Linear Optimization and Extensions, which - not exactly contrary to my personal expectations - has apparently been accepted reasonably weIl by the global optimization community. My objective in putting this book together was originally - and still is - to detail the major algorithmic ideas in linear optimization that have evolved in the past fifty years or so and that have changed the historical optimization "landscape" in substantial ways - both theoretically and computationally. While I may have overlooked the importance of some very recent developments - the work by Farid Alizadeh which generalizes linear programming to "sem i-definite" programming is perhaps a candidate for one of my omissions - I think that major new breakthraughs on those two fronts that interest me - theory and computation - have not occurred since this book was published originally. As a consequence I have restricted myself to a thorough re-working of the original manuscript with the goal of making it more readable. Of course, I have taken this opportunity to correct a few "Schönheitsfehler" of the first edition and to add some illustrations. The index to this volume has been extended substantially - to permit a hurried reader a quicker glance at the wealth of topics that were covered nevertheless already in the first edition. As was the case with the first edition, Dr.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.