Machine Learning Design Patterns

· "O'Reilly Media, Inc."
eBook
408
페이지
적용 가능
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice.

In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation.

You'll learn how to:

  • Identify and mitigate common challenges when training, evaluating, and deploying ML models
  • Represent data for different ML model types, including embeddings, feature crosses, and more
  • Choose the right model type for specific problems
  • Build a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuning
  • Deploy scalable ML systems that you can retrain and update to reflect new data
  • Interpret model predictions for stakeholders and ensure models are treating users fairly

저자 정보

Valliappa (Lak) Lakshmanan is Global Head for Data Analytics and AI Solutions on Google Cloud. His team builds software solutions for business problems using Google Cloud's data analytics and machine learning products. He founded Google's Advanced Solutions Lab ML Immersion program. Before Google, Lak was a Director of Data Science at Climate Corporation and a Research Scientist at NOAA.

Sara Robinson is a Developer Advocate on Google's Cloud Platform team, focusing on machine learning. She inspires developers and data scientists to integrate ML into their applications through demos, online content, and events. Sara has a bachelor’s degree from Brandeis University. Before Google, she was a Developer Advocate on the Firebase team.

Michael Munn is an ML Solutions Engineer at Google where he works with customers of Google Cloud on helping them design, implement, and deploy machine learning models. He also teaches an ML Immersion Program at the Advanced Solutions Lab. Michael has a PhD in mathematics from the City University of New York. Before joining Google, he worked as a research professor.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.