Machine Learning: Master Supervised and Unsupervised Learning Algorithms with Real Examples (English Edition)

· · ·
· BPB Publications
E-kitap
294
Sayfa
Puanlar ve yorumlar doğrulanmaz Daha Fazla Bilgi

Bu e-kitap hakkında

Concepts of Machine Learning with Practical Approaches.

 

KEY FEATURES  

● Includes real-scenario examples to explain the working of Machine Learning algorithms.

● Includes graphical and statistical representation to simplify modeling Machine Learning and Neural Networks.

● Full of Python codes, numerous exercises, and model question papers for data science students. 

 

DESCRIPTION 

The book offers the readers the fundamental concepts of Machine Learning techniques in a user-friendly language. The book aims to give in-depth knowledge of the different Machine Learning (ML) algorithms and the practical implementation of the various ML approaches.

 

This book covers different Supervised Machine Learning algorithms such as Linear Regression Model, Naïve Bayes classifier Decision Tree, K-nearest neighbor, Logistic Regression, Support Vector Machine, Random forest algorithms, Unsupervised Machine Learning algorithms such as k-means clustering, Hierarchical Clustering, Probabilistic clustering, Association rule mining, Apriori Algorithm, f-p growth algorithm, Gaussian mixture model and Reinforcement Learning algorithm such as Markov Decision Process (MDP), Bellman equations, policy evaluation using Monte Carlo, Policy iteration and Value iteration, Q-Learning, State-Action-Reward-State-Action (SARSA). It also includes various feature extraction and feature selection techniques, the Recommender System, and a brief overview of Deep Learning.


By the end of this book, the reader can understand Machine Learning concepts and easily implement various ML algorithms to real-world problems.

 

WHAT YOU WILL LEARN

● Perform feature extraction and feature selection techniques.

● Learn to select the best Machine Learning algorithm for a given problem.

● Get a stronghold in using popular Python libraries like Scikit-learn, pandas, and matplotlib.

● Practice how to implement different types of Machine Learning techniques.

● Learn about Artificial Neural Network along with the Back Propagation Algorithm.

● Make use of various recommended systems with powerful algorithms.


WHO THIS BOOK IS FOR  

This book is designed for data science and analytics students, academicians, and researchers who want to explore the concepts of machine learning and practice the understanding of real cases. Knowing basic statistical and programming concepts would be good, although not mandatory.

 

TABLE OF CONTENTS

1.  Introduction

2. Supervised Learning Algorithms

3. Unsupervised Learning

4. Introduction to the Statistical Learning Theory

5. Semi-Supervised Learning and Reinforcement Learning

6. Recommended Systems


Bu e-kitaba puan verin

Düşüncelerinizi bizimle paylaşın.

Okuma bilgileri

Akıllı telefonlar ve tabletler
Android ve iPad/iPhone için Google Play Kitaplar uygulamasını yükleyin. Bu uygulama, hesabınızla otomatik olarak senkronize olur ve nerede olursanız olun çevrimiçi veya çevrimdışı olarak okumanıza olanak sağlar.
Dizüstü bilgisayarlar ve masaüstü bilgisayarlar
Bilgisayarınızın web tarayıcısını kullanarak Google Play'de satın alınan sesli kitapları dinleyebilirsiniz.
e-Okuyucular ve diğer cihazlar
Kobo eReader gibi e-mürekkep cihazlarında okumak için dosyayı indirip cihazınıza aktarmanız gerekir. Dosyaları desteklenen e-kitap okuyuculara aktarmak için lütfen ayrıntılı Yardım Merkezi talimatlarını uygulayın.