Machine Learning and AI in Finance

Β· Β·
Β· Routledge
αžŸαŸ€αžœαž—αŸ…β€‹αž’αŸαž‘αž·αž…αžαŸ’αžšαžΌαž“αž·αž…
130
αž‘αŸ†αž–αŸαžš
αž˜αžΆαž“αžŸαž·αž‘αŸ’αž’αž·
αž€αžΆαžšαžœαžΆαž™αžαž˜αŸ’αž›αŸƒ αž“αž·αž„αž˜αžαž·αžœαžΆαž™αžαž˜αŸ’αž›αŸƒαž˜αž·αž“αžαŸ’αžšαžΌαžœαž”αžΆαž“αž•αŸ’αž‘αŸ€αž„αž•αŸ’αž‘αžΆαžαŸ‹αž‘αŸ αžŸαŸ’αžœαŸ‚αž„αž™αž›αŸ‹αž”αž“αŸ’αžαŸ‚αž˜

αž’αŸ†αž–αžΈαžŸαŸ€αžœαž—αŸ…β€‹αž’αŸαž‘αž·αž…αžαŸ’αžšαžΌαž“αž·αž€αž“αŸαŸ‡

The significant amount of information available in any field requires a systematic and analytical approach to select the most critical information and anticipate major events. During the last decade, the world has witnessed a rapid expansion of applications of artificial intelligence (AI) and machine learning (ML) algorithms to an increasingly broad range of financial markets and problems. Machine learning and AI algorithms facilitate this process understanding, modelling and forecasting the behaviour of the most relevant financial variables.

The main contribution of this book is the presentation of new theoretical and applied AI perspectives to find solutions to unsolved finance questions. This volume proposes an optimal model for the volatility smile, for modelling high-frequency liquidity demand and supply and for the simulation of market microstructure features. Other new AI developments explored in this book includes building a universal model for a large number of stocks, developing predictive models based on the average price of the crowd, forecasting the stock price using the attention mechanism in a neural network, clustering multivariate time series into different market states, proposing a multivariate distance nonlinear causality test and filtering out false investment strategies with an unsupervised learning algorithm.

Machine Learning and AI in Finance explores the most recent advances in the application of innovative machine learning and artificial intelligence models to predict financial time series, to simulate the structure of the financial markets, to explore nonlinear causality models, to test investment strategies and to price financial options.

The chapters in this book were originally published as a special issue of the Quantitative Finance journal.

αž’αŸ†αž–αžΈβ€‹αž’αŸ’αž“αž€αž“αž·αž–αž“αŸ’αž’

GermΓ‘n G. Creamer is Associate Professor at Stevens Institute of Technology. He is also a visiting scholar at Stern School of Business, NYU; Adjunct Associate Professor, Columbia University and former Senior Manager, American Express.

Gary Kazantsev is the Head of Quant Technology Strategy, Office of the CTO at Bloomberg L. P., New York, USA.

Tomaso Aste is Professor of Complexity Science, Department of Computer Science, University College London, UK.

αžœαžΆαž™αžαž˜αŸ’αž›αŸƒαžŸαŸ€αžœαž—αŸ…β€‹αž’αŸαž‘αž·αž…αžαŸ’αžšαžΌαž“αž·αž€αž“αŸαŸ‡

αž”αŸ’αžšαžΆαž”αŸ‹αž™αžΎαž„αž’αŸ†αž–αžΈαž€αžΆαžšαž™αž›αŸ‹αžƒαžΎαž‰αžšαž”αžŸαŸ‹αž’αŸ’αž“αž€αŸ”

αž’αžΆαž“β€‹αž–αŸαžαŸŒαž˜αžΆαž“

αž‘αžΌαžšαžŸαž–αŸ’αž‘αž†αŸ’αž›αžΆαžαžœαŸƒ αž“αž·αž„β€‹αžαŸαž”αŸ’αž›αŸαž
αžŠαŸ†αž‘αžΎαž„αž€αž˜αŸ’αž˜αžœαž·αž’αžΈ Google Play Books αžŸαž˜αŸ’αžšαžΆαž”αŸ‹ Android αž“αž·αž„ iPad/iPhone αŸ” αžœαžΆβ€‹αž’αŸ’αžœαžΎαžŸαž˜αž€αžΆαž›αž€αž˜αŸ’αž˜β€‹αžŠαŸ„αž™αžŸαŸ’αžœαŸαž™αž”αŸ’αžšαžœαžαŸ’αžαž·αž‡αžΆαž˜αž½αž™β€‹αž‚αžŽαž“αžΈβ€‹αžšαž”αžŸαŸ‹αž’αŸ’αž“αž€β€‹ αž“αž·αž„β€‹αž’αž“αž»αž‰αŸ’αž‰αžΆαžαž±αŸ’αž™β€‹αž’αŸ’αž“αž€αž’αžΆαž“αž–αŸαž›β€‹αž˜αžΆαž“αž’αŸŠαžΈαž“αž’αžΊαžŽαž·αž αž¬αž‚αŸ’αž˜αžΆαž“β€‹αž’αŸŠαžΈαž“αž’αžΊαžŽαž·αžβ€‹αž“αŸ…αž‚αŸ’αžšαž”αŸ‹αž‘αžΈαž€αž“αŸ’αž›αŸ‚αž„αŸ”
αž€αž»αŸ†αž–αŸ’αž™αžΌαž‘αŸαžšβ€‹αž™αž½αžšαžŠαŸƒ αž“αž·αž„αž€αž»αŸ†αž–αŸ’αž™αžΌαž‘αŸαžš
αž’αŸ’αž“αž€αž’αžΆαž…αžŸαŸ’αžŠαžΆαž”αŸ‹αžŸαŸ€αžœαž—αŸ…αž‡αžΆαžŸαŸ†αž‘αŸαž„αžŠαŸ‚αž›αž”αžΆαž“αž‘αž·αž‰αž“αŸ…αž€αŸ’αž“αž»αž„ Google Play αžŠαŸ„αž™αž”αŸ’αžšαžΎαž€αž˜αŸ’αž˜αžœαž·αž’αžΈαžšαž»αž€αžšαž€αžαžΆαž˜αž’αŸŠαžΈαž“αž’αžΊαžŽαž·αžαž€αŸ’αž“αž»αž„αž€αž»αŸ†αž–αŸ’αž™αžΌαž‘αŸαžšαžšαž”αžŸαŸ‹αž’αŸ’αž“αž€αŸ”
eReaders αž“αž·αž„β€‹αž§αž”αž€αžšαžŽαŸβ€‹αž•αŸ’αžŸαŸαž„β€‹αž‘αŸ€αž
αžŠαžΎαž˜αŸ’αž”αžΈαž’αžΆαž“αž“αŸ…αž›αžΎβ€‹αž§αž”αž€αžšαžŽαŸ e-ink αžŠαžΌαž…αž‡αžΆβ€‹αž§αž”αž€αžšαžŽαŸαž’αžΆαž“β€‹αžŸαŸ€αžœαž—αŸ…αž’αŸαž‘αž·αž…αžαŸ’αžšαžΌαž“αž·αž€ Kobo αž’αŸ’αž“αž€αž“αžΉαž„αžαŸ’αžšαžΌαžœβ€‹αž‘αžΆαž‰αž™αž€β€‹αž―αž€αžŸαžΆαžš αž αžΎαž™β€‹αž•αŸ’αž‘αŸαžšαžœαžΆαž‘αŸ…β€‹αž§αž”αž€αžšαžŽαŸβ€‹αžšαž”αžŸαŸ‹αž’αŸ’αž“αž€αŸ” αžŸαžΌαž˜αž’αž“αž»αžœαžαŸ’αžαžαžΆαž˜β€‹αž€αžΆαžšαžŽαŸ‚αž“αžΆαŸ†αž›αž˜αŸ’αž’αž·αžαžšαž”αžŸαŸ‹αž˜αž‡αŸ’αžˆαž˜αžŽαŸ’αžŒαž›αž‡αŸ†αž“αž½αž™ αžŠαžΎαž˜αŸ’αž”αžΈαž•αŸ’αž‘αŸαžšαž―αž€αžŸαžΆαžšβ€‹αž‘αŸ…αž§αž”αž€αžšαžŽαŸαž’αžΆαž“αžŸαŸ€αžœαž—αŸ…β€‹αž’αŸαž‘αž·αž…αžαŸ’αžšαžΌαž“αž·αž€αžŠαŸ‚αž›αžŸαŸ’αž‚αžΆαž›αŸ‹αŸ”