Machine Learning in Translation

·
· Taylor & Francis
Carte electronică
218
Pagini
Eligibilă
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

Machine Learning in Translation introduces machine learning (ML) theories and technologies that are most relevant to translation processes, approaching the topic from a human perspective and emphasizing that ML and ML-driven technologies are tools for humans.

Providing an exploration of the common ground between human and machine learning and of the nature of translation that leverages this new dimension, this book helps linguists, translators, and localizers better find their added value in a ML-driven translation environment. Part One explores how humans and machines approach the problem of translation in their own particular ways, in terms of word embeddings, chunking of larger meaning units, and prediction in translation based upon the broader context. Part Two introduces key tasks, including machine translation, translation quality assessment and quality estimation, and other Natural Language Processing (NLP) tasks in translation. Part Three focuses on the role of data in both human and machine learning processes. It proposes that a translator’s unique value lies in the capability to create, manage, and leverage language data in different ML tasks in the translation process. It outlines new knowledge and skills that need to be incorporated into traditional translation education in the machine learning era. The book concludes with a discussion of human-centered machine learning in translation, stressing the need to empower translators with ML knowledge, through communication with ML users, developers, and programmers, and with opportunities for continuous learning.

This accessible guide is designed for current and future users of ML technologies in localization workflows, including students on courses in translation and localization, language technology, and related areas. It supports the professional development of translation practitioners, so that they can fully utilize ML technologies and design their own human-centered ML-driven translation workflows and NLP tasks.

Despre autor

Peng Wang is a freelance conference interpreter with the Translation Bureau, Public Works and Government Services Canada, a part-time professor in the School of Translation and Interpretation, University of Ottawa and Course designer and instructor for Think NLP and Machine Translation Masterclass at the Localization Institute. She has published two books in Chinese, including Harry Potter and Its Chinese Translation.

David B. Sawyer is Director of Language Testing at the U.S. State Department’s Foreign Service Institute and a Senior Lecturer at the University of Maryland, USA. He is the author of Foundations of Interpreter Education: Curriculum and Assessment and co-editor of The Evolving Curriculum in Interpreter and Translator Education: Stakeholder Perspectives and Voices (both John Benjamins).

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.