Random Perturbations of Dynamical Systems: Edition 2

· Grundlehren der mathematischen Wissenschaften Book 260 · Springer Science & Business Media
3.0
1 review
Ebook
432
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

The first edition of this book was published in 1979 in Russian. Most of the material presented was related to large-deviation theory for stochastic pro cesses. This theory was developed more or less at the same time by different authors in different countries. This book was the first monograph in which large-deviation theory for stochastic processes was presented. Since then a number of books specially dedicated to large-deviation theory have been pub lished, including S. R. S. Varadhan [4], A. D. Wentzell [9], J. -D. Deuschel and D. W. Stroock [1], A. Dembo and O. Zeitouni [1]. Just a few changes were made for this edition in the part where large deviations are treated. The most essential is the addition of two new sections in the last chapter. Large deviations for infinite-dimensional systems are briefly conside:red in one new section, and the applications of large-deviation theory to wave front prop agation for reaction-diffusion equations are considered in another one. Large-deviation theory is not the only class of limit theorems arising in the context of random perturbations of dynamical systems. We therefore included in the second edition a number of new results related to the aver aging principle. Random perturbations of classical dynamical systems under certain conditions lead to diffusion processes on graphs. Such problems are considered in the new Chapter 8.

Ratings and reviews

3.0
1 review

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.