Nash Manifolds

· Springer
Ebook
228
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

A Nash manifold denotes a real manifold furnished with algebraic structure, following a theorem of Nash that a compact differentiable manifold can be imbedded in a Euclidean space so that the image is precisely such a manifold. This book, in which almost all results are very recent or unpublished, is an account of the theory of Nash manifolds, whose properties are clearer and more regular than those of differentiable or PL manifolds. Basic to the theory is an algebraic analogue of Whitney's Approximation Theorem. This theorem induces a "finiteness" of Nash manifold structures and differences between Nash and differentiable manifolds. The point of view of the author is topological. However the proofs also require results and techniques from other domains so elementary knowledge of commutative algebra, several complex variables, differential topology, PL topology and real singularities is required of the reader. The book is addressed to graduate students and researchers in differential topology and real algebraic geometry.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.