Mastering Predictive Analytics with Python

· Packt Publishing Ltd
Carte electronică
334
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

Exploit the power of data in your business by building advanced predictive modeling applications with PythonAbout This BookMaster open source Python tools to build sophisticated predictive modelsLearn to identify the right machine learning algorithm for your problem with this forward-thinking guideGrasp the major methods of predictive modeling and move beyond the basics to a deeper level of understandingWho This Book Is For

This book is designed for business analysts, BI analysts, data scientists, or junior level data analysts who are ready to move from a conceptual understanding of advanced analytics to an expert in designing and building advanced analytics solutions using Python. You're expected to have basic development experience with Python.

What You Will LearnGain an insight into components and design decisions for an analytical applicationMaster the use Python notebooks for exploratory data analysis and rapid prototypingGet to grips with applying regression, classification, clustering, and deep learning algorithmsDiscover the advanced methods to analyze structured and unstructured dataFind out how to deploy a machine learning model in a production environmentVisualize the performance of models and the insights they produceScale your solutions as your data grows using PythonEnsure the robustness of your analytic applications by mastering the best practices of predictive analysisIn Detail

The volume, diversity, and speed of data available has never been greater. Powerful machine learning methods can unlock the value in this information by finding complex relationships and unanticipated trends. Using the Python programming language, analysts can use these sophisticated methods to build scalable analytic applications to deliver insights that are of tremendous value to their organizations.

In Mastering Predictive Analytics with Python, you will learn the process of turning raw data into powerful insights. Through case studies and code examples using popular open-source Python libraries, this book illustrates the complete development process for analytic applications and how to quickly apply these methods to your own data to create robust and scalable prediction services.

Covering a wide range of algorithms for classification, regression, clustering, as well as cutting-edge techniques such as deep learning, this book illustrates not only how these methods work, but how to implement them in practice. You will learn to choose the right approach for your problem and how to develop engaging visualizations to bring the insights of predictive modeling to life

Style and approach

This book emphasizes on explaining methods through example data and code, showing you templates that you can quickly adapt to your own use cases. It focuses on both a practical application of sophisticated algorithms and the intuitive understanding necessary to apply the correct method to the problem at hand. Through visual examples, it also demonstrates how to convey insights through insightful charts and reporting.

Despre autor

Joseph Babcock has spent almost a decade exploring complex datasets and combining predictive modeling with visualization to understand correlations and forecast anticipated outcomes. He received a PhD from the Solomon H. Snyder Department of Neuroscience at The Johns Hopkins University School of Medicine, where he used machine learning to predict adverse cardiac side effects of drugs. Outside the academy, he has tackled big data challenges in the healthcare and entertainment industries.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.