Mastering Text Mining with R

·
· Packt Publishing Ltd
Sách điện tử
258
Trang
Điểm xếp hạng và bài đánh giá chưa được xác minh  Tìm hiểu thêm

Giới thiệu về sách điện tử này

Master text-taming techniques and build effective text-processing applications with RAbout This BookDevelop all the relevant skills for building text-mining apps with R with this easy-to-follow guideGain in-depth understanding of the text mining process with lucid implementation in the R languageExample-rich guide that lets you gain high-quality information from text dataWho This Book Is For

If you are an R programmer, analyst, or data scientist who wants to gain experience in performing text data mining and analytics with R, then this book is for you. Exposure to working with statistical methods and language processing would be helpful.

What You Will LearnGet acquainted with some of the highly efficient R packages such as OpenNLP and RWeka to perform various steps in the text mining processAccess and manipulate data from different sources such as JSON and HTTPProcess text using regular expressionsGet to know the different approaches of tagging texts, such as POS tagging, to get started with text analysisExplore different dimensionality reduction techniques, such as Principal Component Analysis (PCA), and understand its implementation in RDiscover the underlying themes or topics that are present in an unstructured collection of documents, using common topic models such as Latent Dirichlet Allocation (LDA)Build a baseline sentence completing applicationPerform entity extraction and named entity recognition using RIn Detail

Text Mining (or text data mining or text analytics) is the process of extracting useful and high-quality information from text by devising patterns and trends. R provides an extensive ecosystem to mine text through its many frameworks and packages.

Starting with basic information about the statistics concepts used in text mining, this book will teach you how to access, cleanse, and process text using the R language and will equip you with the tools and the associated knowledge about different tagging, chunking, and entailment approaches and their usage in natural language processing. Moving on, this book will teach you different dimensionality reduction techniques and their implementation in R. Next, we will cover pattern recognition in text data utilizing classification mechanisms, perform entity recognition, and develop an ontology learning framework.

By the end of the book, you will develop a practical application from the concepts learned, and will understand how text mining can be leveraged to analyze the massively available data on social media.

Style and approach

This book takes a hands-on, example-driven approach to the text mining process with lucid implementation in R.

Giới thiệu tác giả

Ashish Kumar is an IIM alumnus and an engineer at heart. He has extensive experience in data science, machine learning, and natural language processing having worked at organizations, such as McAfee-Intel, an ambitious data science startup Volt consulting), and presently associated to the software and research lab of a leading MNC. Apart from work, Ashish also participates in data science competitions at Kaggle in his spare time.

Avinash Paul is a programming language enthusiast, loves exploring open sources technologies and programmer by choice. He has over nine years of programming experience. He has worked in Sabre Holdings, McAfee, Mindtree and has experience in data-driven product development, He was intrigued by data science and data mining while developing niche product in education space for a ambitious data science start-up. He believes data science can solve lot of societal challenges. In his spare time he loves to read technical books and teach underprivileged children back home.

Xếp hạng sách điện tử này

Cho chúng tôi biết suy nghĩ của bạn.

Đọc thông tin

Điện thoại thông minh và máy tính bảng
Cài đặt ứng dụng Google Play Sách cho AndroidiPad/iPhone. Ứng dụng sẽ tự động đồng bộ hóa với tài khoản của bạn và cho phép bạn đọc trực tuyến hoặc ngoại tuyến dù cho bạn ở đâu.
Máy tính xách tay và máy tính
Bạn có thể nghe các sách nói đã mua trên Google Play thông qua trình duyệt web trên máy tính.
Thiết bị đọc sách điện tử và các thiết bị khác
Để đọc trên thiết bị e-ink như máy đọc sách điện tử Kobo, bạn sẽ cần tải tệp xuống và chuyển tệp đó sang thiết bị của mình. Hãy làm theo hướng dẫn chi tiết trong Trung tâm trợ giúp để chuyển tệp sang máy đọc sách điện tử được hỗ trợ.