Mathematical Geophysics: An introduction to rotating fluids and the Navier-Stokes equations

· · ·
· Oxford Lecture Series in Mathematics and Its Applications Libro 32 · Clarendon Press
eBook
264
Páginas
Apto
Las valoraciones y las reseñas no se verifican. Más información

Información sobre este eBook

Aimed at graduate students, researchers and academics in mathematics, engineering, oceanography, meteorology and mechanics, this text provides a detailed introduction to the physical theory of rotating fluids, a significant part of geophysical fluid dynamics. The text is divided into four parts, with the first part providing the physical background of the geophysical models to be analysed. Part II is devoted to a self contained proof of the existence of weak (or strong) solutions to the incompressible Navier-Stokes equations. Part III deals with the rapidly rotating Navier-Stokes equations, first in the whole space, where dispersion effects are considered. The case where the domain has periodic boundary conditions is then analysed, and finally rotating Navier-Stokes equations between two plates are studied, both in the case of periodic horizontal coordinates and those in R2. In Part IV the stability of Ekman boundary layers, and boundary layer effects in magnetohydrodynamics and quasigeostrophic equations are discussed. The boundary layers which appear near vertical walls are presented and formally linked with the classical Prandlt equations. Finally spherical layers are introduced, whose study is completely open.

Acerca del autor

Jean-Yves Chemin is a Professor at the University of Paris VI Benoit Desjardins is based at the Centre of Atomic Studies centre de Bruyers le Chatel Isabelle Gallagher is a Professor at the Institut de Mathématiques de Jussieu Emmanuel Greiner is based at the École Normale Superiore de Lyon

Valorar este eBook

Danos tu opinión.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.