Mathematical Geophysics: An introduction to rotating fluids and the Navier-Stokes equations

· · ·
· Oxford Lecture Series in Mathematics and Its Applications Livre 32 · Clarendon Press
E-book
264
Pages
Éligible
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

Aimed at graduate students, researchers and academics in mathematics, engineering, oceanography, meteorology and mechanics, this text provides a detailed introduction to the physical theory of rotating fluids, a significant part of geophysical fluid dynamics. The text is divided into four parts, with the first part providing the physical background of the geophysical models to be analysed. Part II is devoted to a self contained proof of the existence of weak (or strong) solutions to the incompressible Navier-Stokes equations. Part III deals with the rapidly rotating Navier-Stokes equations, first in the whole space, where dispersion effects are considered. The case where the domain has periodic boundary conditions is then analysed, and finally rotating Navier-Stokes equations between two plates are studied, both in the case of periodic horizontal coordinates and those in R2. In Part IV the stability of Ekman boundary layers, and boundary layer effects in magnetohydrodynamics and quasigeostrophic equations are discussed. The boundary layers which appear near vertical walls are presented and formally linked with the classical Prandlt equations. Finally spherical layers are introduced, whose study is completely open.

À propos de l'auteur

Jean-Yves Chemin is a Professor at the University of Paris VI Benoit Desjardins is based at the Centre of Atomic Studies centre de Bruyers le Chatel Isabelle Gallagher is a Professor at the Institut de Mathématiques de Jussieu Emmanuel Greiner is based at the École Normale Superiore de Lyon

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.