Mathematical Geophysics: An introduction to rotating fluids and the Navier-Stokes equations

· · ·
· Oxford Lecture Series in Mathematics and Its Applications Buku 32 · Clarendon Press
eBook
264
Halaman
Memenuhi syarat
Rating dan ulasan tidak diverifikasi  Pelajari Lebih Lanjut

Tentang eBook ini

Aimed at graduate students, researchers and academics in mathematics, engineering, oceanography, meteorology and mechanics, this text provides a detailed introduction to the physical theory of rotating fluids, a significant part of geophysical fluid dynamics. The text is divided into four parts, with the first part providing the physical background of the geophysical models to be analysed. Part II is devoted to a self contained proof of the existence of weak (or strong) solutions to the incompressible Navier-Stokes equations. Part III deals with the rapidly rotating Navier-Stokes equations, first in the whole space, where dispersion effects are considered. The case where the domain has periodic boundary conditions is then analysed, and finally rotating Navier-Stokes equations between two plates are studied, both in the case of periodic horizontal coordinates and those in R2. In Part IV the stability of Ekman boundary layers, and boundary layer effects in magnetohydrodynamics and quasigeostrophic equations are discussed. The boundary layers which appear near vertical walls are presented and formally linked with the classical Prandlt equations. Finally spherical layers are introduced, whose study is completely open.

Tentang pengarang

Jean-Yves Chemin is a Professor at the University of Paris VI Benoit Desjardins is based at the Centre of Atomic Studies centre de Bruyers le Chatel Isabelle Gallagher is a Professor at the Institut de Mathématiques de Jussieu Emmanuel Greiner is based at the École Normale Superiore de Lyon

Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.