Mathematical Theory of Bayesian Statistics

· CRC Press
E-raamat
330
lehekülge
Sobilik
Hinnangud ja arvustused pole kinnitatud.  Lisateave

Teave selle e-raamatu kohta

Mathematical Theory of Bayesian Statistics introduces the mathematical foundation of Bayesian inference which is well-known to be more accurate in many real-world problems than the maximum likelihood method. Recent research has uncovered several mathematical laws in Bayesian statistics, by which both the generalization loss and the marginal likelihood are estimated even if the posterior distribution cannot be approximated by any normal distribution.

Features

  • Explains Bayesian inference not subjectively but objectively.
  • Provides a mathematical framework for conventional Bayesian theorems.
  • Introduces and proves new theorems.
  • Cross validation and information criteria of Bayesian statistics are studied from the mathematical point of view.
  • Illustrates applications to several statistical problems, for example, model selection, hyperparameter optimization, and hypothesis tests.

This book provides basic introductions for students, researchers, and users of Bayesian statistics, as well as applied mathematicians.

Author

Sumio Watanabe is a professor of Department of Mathematical and Computing Science at Tokyo Institute of Technology. He studies the relationship between algebraic geometry and mathematical statistics.

Teave autori kohta

Sumio Watanabe is a professor in the Department of Computational Intelligence and Systems Science at Tokyo Institute of Technology, Japan.

Hinnake seda e-raamatut

Andke meile teada, mida te arvate.

Lugemisteave

Nutitelefonid ja tahvelarvutid
Installige rakendus Google Play raamatud Androidile ja iPadile/iPhone'ile. See sünkroonitakse automaatselt teie kontoga ja see võimaldab teil asukohast olenemata lugeda nii võrgus kui ka võrguühenduseta.
Sülearvutid ja arvutid
Google Playst ostetud audioraamatuid saab kuulata arvuti veebibrauseris.
E-lugerid ja muud seadmed
E-tindi seadmetes (nt Kobo e-lugerid) lugemiseks peate faili alla laadima ja selle oma seadmesse üle kandma. Failide toetatud e-lugeritesse teisaldamiseks järgige üksikasjalikke abikeskuse juhiseid.