Mathematics For Computation (M4c)

· · ·
· World Scientific
E-book
476
Páginas
Qualificado
As notas e avaliações não são verificadas Saiba mais

Sobre este e-book

The overall topic of the volume, Mathematics for Computation (M4C), is mathematics taking crucially into account the aspect of computation, investigating the interaction of mathematics with computation, bridging the gap between mathematics and computation wherever desirable and possible, and otherwise explaining why not.Recently, abstract mathematics has proved to have more computational content than ever expected. Indeed, the axiomatic method, originally intended to do away with concrete computations, seems to suit surprisingly well the programs-from-proofs paradigm, with abstraction helping not only clarity but also efficiency.Unlike computational mathematics, which rather focusses on objects of computational nature such as algorithms, the scope of M4C generally encompasses all the mathematics, including abstract concepts such as functions. The purpose of M4C actually is a strongly theory-based and therefore, is a more reliable and sustainable approach to actual computation, up to the systematic development of verified software.While M4C is situated within mathematical logic and the related area of theoretical computer science, in principle it involves all branches of mathematics, especially those which prompt computational considerations. In traditional terms, the topics of M4C include proof theory, constructive mathematics, complexity theory, reverse mathematics, type theory, category theory and domain theory.The aim of this volume is to provide a point of reference by presenting up-to-date contributions by some of the most active scholars in each field. A variety of approaches and techniques are represented to give as wide a view as possible and promote cross-fertilization between different styles and traditions.

Avaliar este e-book

Diga o que você achou

Informações de leitura

Smartphones e tablets
Instale o app Google Play Livros para Android e iPad/iPhone. Ele sincroniza automaticamente com sua conta e permite ler on-line ou off-line, o que você preferir.
Laptops e computadores
Você pode ouvir audiolivros comprados no Google Play usando o navegador da Web do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos de e-ink como os e-readers Kobo, é necessário fazer o download e transferir um arquivo para o aparelho. Siga as instruções detalhadas da Central de Ajuda se quiser transferir arquivos para os e-readers compatíveis.