Mathematics of the Transcendental

· A&C Black
eBook
224
Pages
Ratings and reviews aren’t verified  Learn more

About this eBook

In Mathematics of the Transcendental, Alain Badiou painstakingly works through the pertinent aspects of category theory, demonstrating their internal logic and veracity, their derivation and distinction from set theory, and the 'thinking of being'. In doing so he sets out the basic onto-logical requirements of his greater and transcendental logics as articulated in his magnum opus, Logics of Worlds.

Previously unpublished in either French or English, Mathematics of the Transcendental provides Badiou's readers with a much-needed complete elaboration of his understanding and use of category theory. The book is vital to understanding the mathematical and logical basis of his theory of appearing as elaborated in Logics of Worlds and other works and is essential reading for his many followers.

About the author

Alain Badiou teaches at the École Normale Supérieure and at the Collège International de Philosophie in Paris, France. In addition to several novels, plays and political essays, he has published a number of major philosophical works.

A. J. Bartlett is an Adjunct Research Fellow at the Research Unit in European Philosophy at Monash University, Australia. He is the author of Badiou and Plato: An Education by Truths, and with Justin Clemens and Jon Roffe author of Lacan, Deleuze, Badiou, forthcoming.

Alex Ling is Research Lecturer in Communication and Media Studies at the University of Western Sydney, Australia. He is the author of Badiou and Cinema, and Badiou Reframed, forthcoming.

Rate this eBook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Centre instructions to transfer the files to supported eReaders.